

# The Analysis (Co-)Sparse Model

Origin, Definition, Pursuit, Dictionary-Learning and Beyond

Michael Elad

The Computer Science Department  
The Technion – Israel Institute of technology  
Haifa 32000, Israel

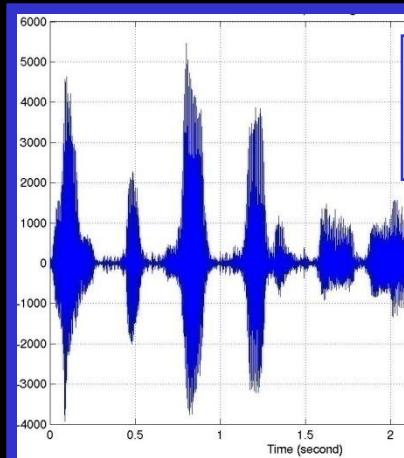


Learning sparse representations for Signal Processing  
February 20-22, 2015, Bangalore, India

# Introduction

Why Models for Signals?  
What is the Analysis Model?

# Informative Data → Inner Structure



Voice Signal

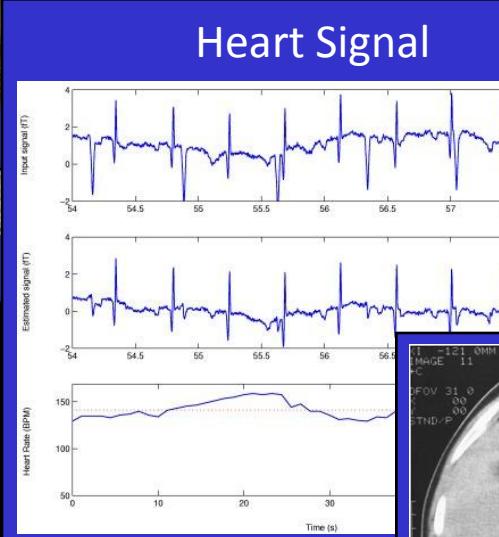


Still Image

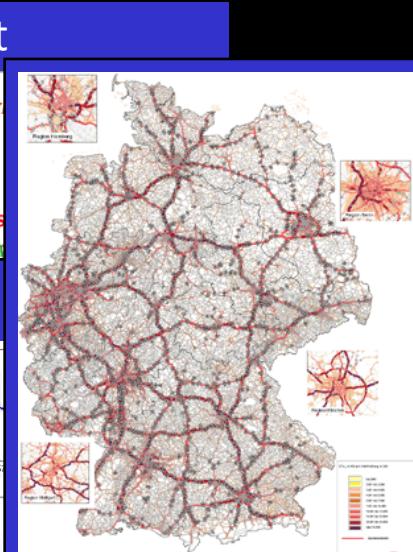
Radar Imaging



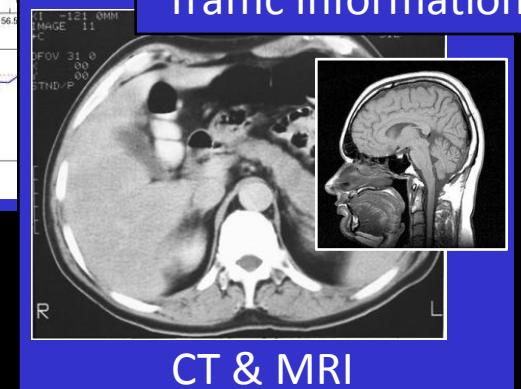
Stock Market



Heart Signal



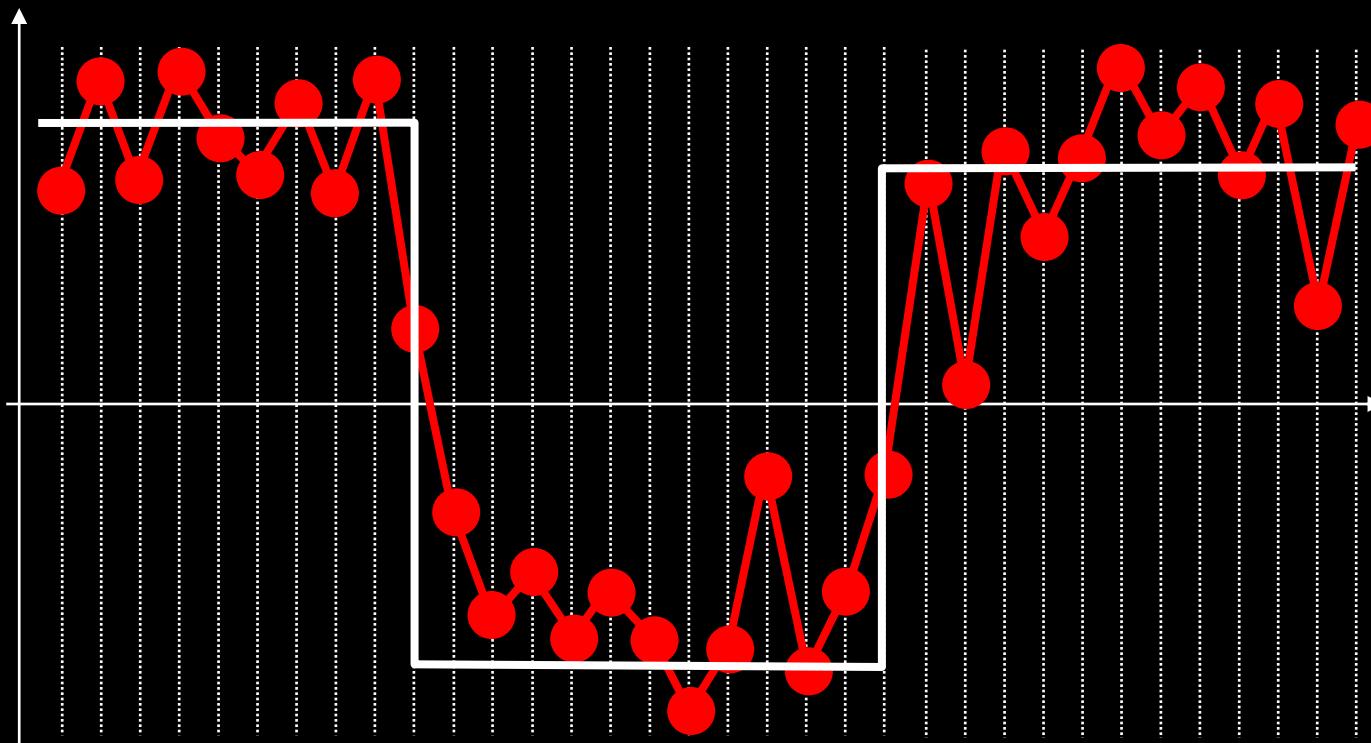
Traffic Information



CT & MRI

- It does not matter what is the data you are working on – if it is carrying information, it has an inner structure.
- This structure = rules the data complies with.
- Signal/image processing heavily relies on these rules.

# Who Needs Models?

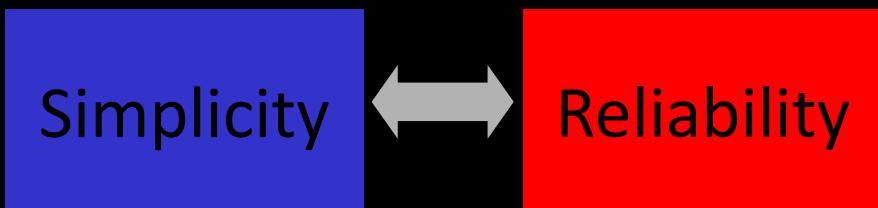


Effective removal of noise relies on a proper **modeling** of the signal

- ❑ Models are central in signal and image processing.
- ❑ They are used for various tasks – sampling, IP, separation, compression, detection, ...
- ❑ A model is a set of mathematical relations that the data is believed to satisfy.

# Which Model to Use?

- There are many different ways to mathematically model signals and images with varying degrees of success.
- The following is a partial list of such models (for images):
- Good models should be simple while matching the signals:



Principal-Component-Analysis

Anisotropic diffusion

Markov Random Field

Wiener Filtering

DCT and JPEG      Huber-Markov

Wavelet & JPEG-2000

Piece-Wise-Smooth

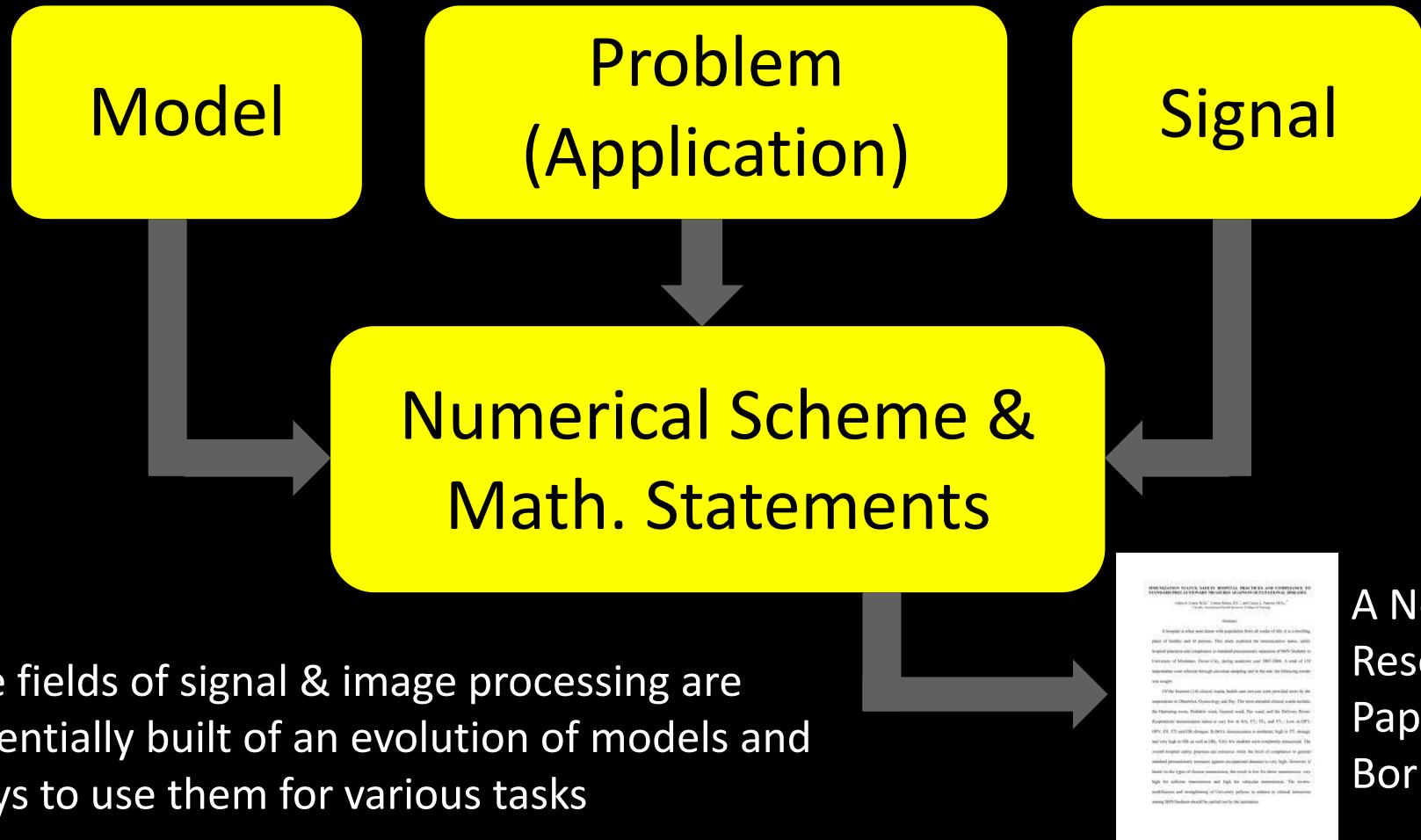
C2-smoothness

Besov-Spaces      UoS

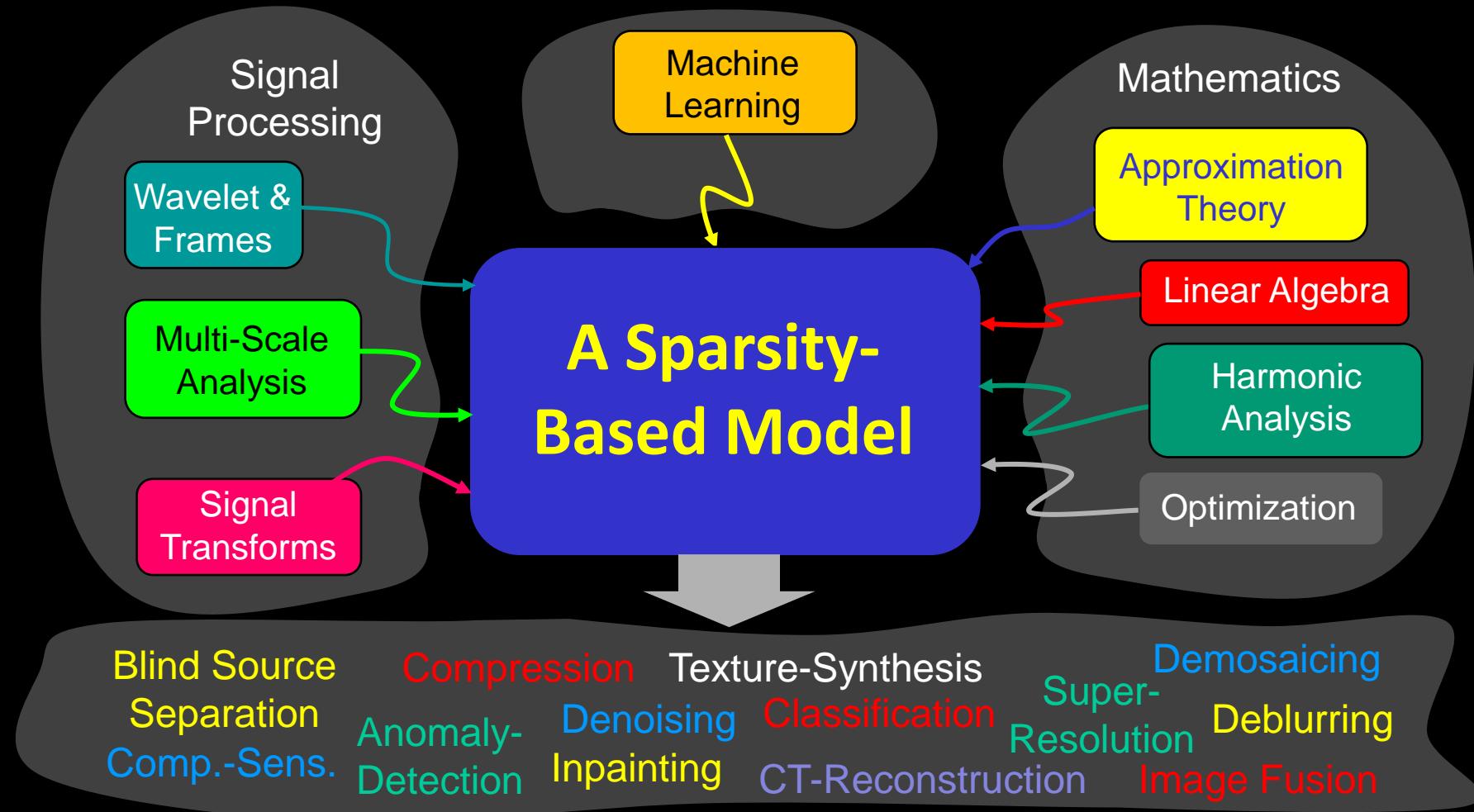
Total-Variation

Local-PCA      Mixture of Gaus.

# Research in Signal/Image Processing

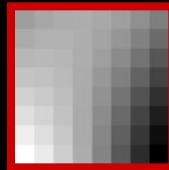


# A Model Based on Sparsity & Redundancy



# What is This Model?

- Task: model image patches of size  $10 \times 10$  pixels.

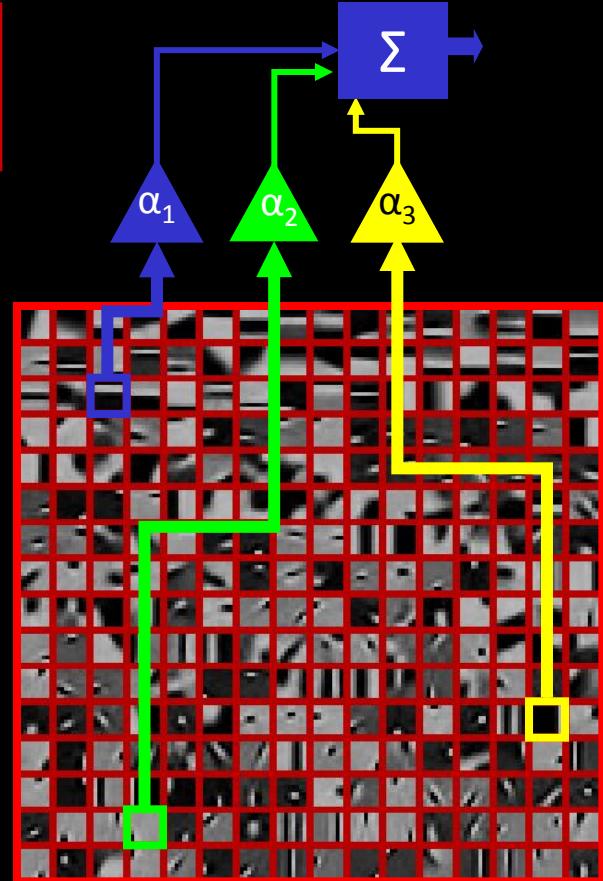


- We assume that a **dictionary** of such image patches is given, containing 256 **atom** images.

- The sparsity-based model assumption: **every** image patch can be described as a linear combination of **few** atoms.



Chemistry of Data



# However ...

Sparsity and Redundancy can be Practiced in two different ways

Synthesis  
as presented above



Analysis

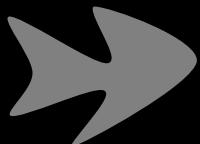
The attention to sparsity-based models has been given mostly to the **synthesis** option, leaving the **analysis** almost untouched.

For a long-while these two options were confused, even considered to be (near)-equivalent.

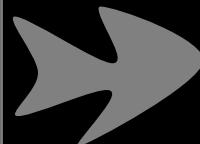
Well ... now we (think that we) know better !! The two are **VERY DIFFERENT**

# This Talk is About the Analysis Model

Part I – Recalling  
the Sparsity-Based  
**Synthesis** Model



Part II – Analysis  
Model – Source of  
Confusion

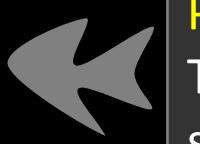


Part III – Analysis  
Model – a New  
Point of View

Part VI – Some  
Preliminary Results  
and Prospects



Part V – Analysis  
K-SVD Dictionary  
Learning



Part IV –  
THR  
study



The message:

The co-sparse analysis model is a very appealing alternative to the synthesis model, with a great potential for leading us to a new era in signal modeling.

# Part I - Background

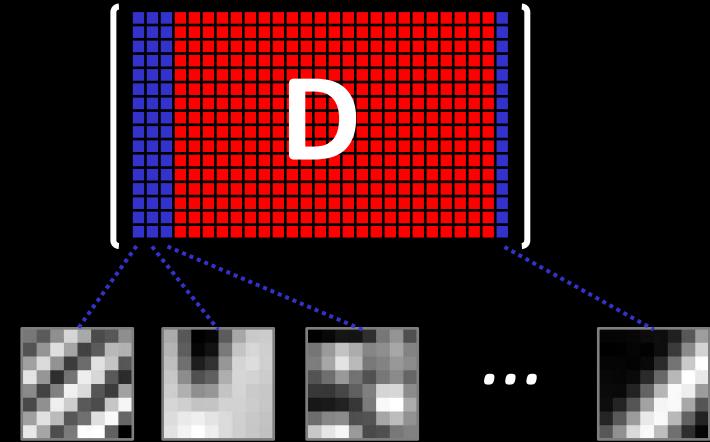
## Recalling the Synthesis Sparse Model, the K-SVD, and Denoising



# The Sparsity-Based Synthesis Model

- We assume the existence of a synthesis dictionary  $\mathbf{D} \in \mathbb{R}^{d \times n}$  whose columns are the **atom signals**.
- Signals are modeled as sparse **linear combinations** of the dictionary atoms:

$$\underline{x} = \mathbf{D} \underline{\alpha}$$



- We seek a **sparsity** of  $\underline{\alpha}$ , meaning that it is assumed to contain mostly zeros.
- This model is typically referred to as the **synthesis** sparse and redundant representation model for signals.
- This model became very popular and very successful in the past decade.

$$\underline{x} = \left[ \begin{array}{c} \vdots \\ \vdots \end{array} \right] = \left[ \begin{array}{c|c} \mathbf{D} & \mathbf{0} \end{array} \right] \left[ \begin{array}{c} \vdots \\ \vdots \end{array} \right] \underline{\alpha}$$

# The Synthesis Model – Basics

- The synthesis representation is expected to be sparse:  $\|\underline{\alpha}\|_0 = k \ll d$

$$\|\underline{\alpha}\|_0 = k \ll d$$

- Adopting a Bayesian point of view:

- Draw the support  $T$  (with  $k$  non-zeroes) at random;
- Choose the non-zero coefficients randomly (e.g. iid Gaussians); and
- Multiply by  $\mathbf{D}$  to get the synthesis signal.

$$\begin{array}{c} \text{d} \downarrow \quad \text{n} \quad \uparrow \\ \left[ \begin{array}{c|c|c|c} \text{Dictionary} & & & \\ \hline & \text{red} & \text{red} & \text{red} \\ \hline & \text{purple} & \text{purple} & \text{purple} \\ & \text{purple} & \text{purple} & \text{purple} \\ & \text{purple} & \text{purple} & \text{purple} \end{array} \right] \end{array} = \left[ \begin{array}{c} \text{red} \\ \text{red} \end{array} \right] \underline{\alpha} = \underline{x}$$

- Such synthesis signals belong to a Union-of-Subspaces (UoS):

$$\underline{x} \in \bigcup_{|T|=k} \text{span}\{\mathbf{D}_T\} \quad \text{where} \quad \mathbf{D}_T \underline{\alpha}_T = \underline{x}$$

- This union contains  $\binom{n}{k}$  subspaces, each of dimension  $k$ .

# The Synthesis Model – Pursuit

- Fundamental problem: Given the noisy measurements,

$$\underline{y} = \underline{x} + \underline{v} = \mathbf{D}\underline{\alpha} + \underline{v}, \quad \underline{v} \sim \mathbf{N}\{\underline{0}, \sigma^2 \mathbf{I}\}$$

recover the clean signal  $\underline{x}$  – This is a denoising task.

- This can be posed as:  $\hat{\underline{\alpha}} = \underset{\underline{\alpha}}{\text{ArgMin}} \|\underline{y} - \mathbf{D}\underline{\alpha}\|_2^2$  s.t.  $\|\underline{\alpha}\|_0 = k \Rightarrow \hat{\underline{x}} = \mathbf{D}\hat{\underline{\alpha}}$

- While this is a (NP-) hard problem, its approximated solution can be obtained by

- Use  $L_1$  instead of  $L_0$  (Basis-Pursuit)
- Greedy methods (MP, OMP, LS-OMP)
- Hybrid methods (IHT, SP, CoSaMP).

$\left. \begin{array}{l} \text{Pursuit} \\ \text{Algorithms} \end{array} \right\}$

- Theoretical studies provide various guarantees for the success of these techniques, typically depending on  $k$  and properties of  $\mathbf{D}$ .

# The Synthesis Model – Dictionary Learning

$$\begin{bmatrix} \mathbf{X} \\ \vdots \\ \mathbf{X} \end{bmatrix} = \mathbf{D} \begin{bmatrix} \mathbf{A} \\ \vdots \\ \mathbf{A} \end{bmatrix} + \mathbf{v}$$

Given Signals:  $\{ \underline{y}_j = \underline{x}_j + \underline{v}_j \quad \underline{v}_j \sim \mathbf{N}\{0, \sigma^2 \mathbf{I}\} \}_{j=1}^N$

Min  $_{\mathbf{D}, \mathbf{A}} \| \mathbf{D} \mathbf{A} - \mathbf{Y} \|_F^2$

Example are linear combinations of atoms from  $\mathbf{D}$

s.t.  $\forall j = 1, 2, \dots, N \quad \| \underline{\alpha}_j \|_0 \leq k$

Each example has a sparse representation with no more than  $k$  atoms

Field & Olshausen ('96)

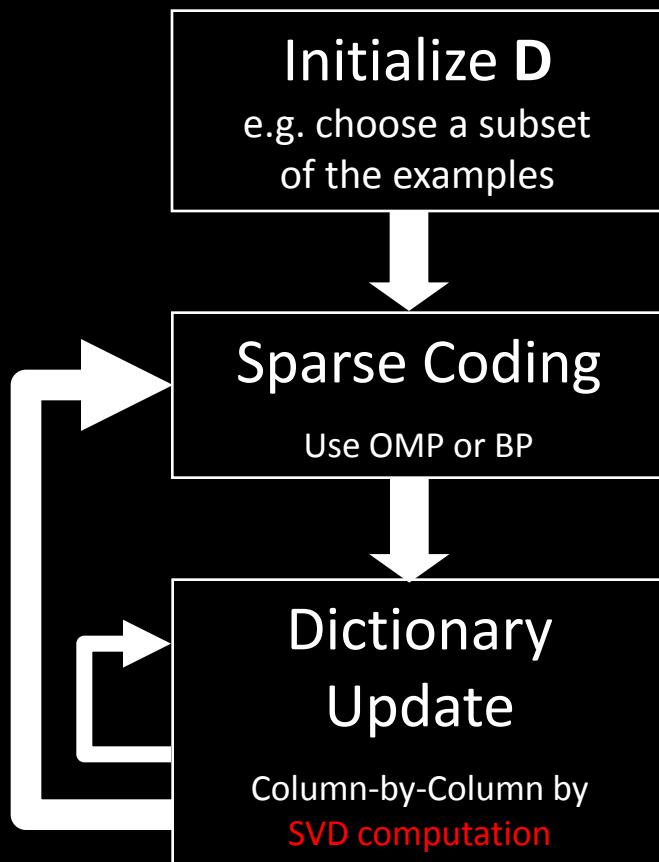
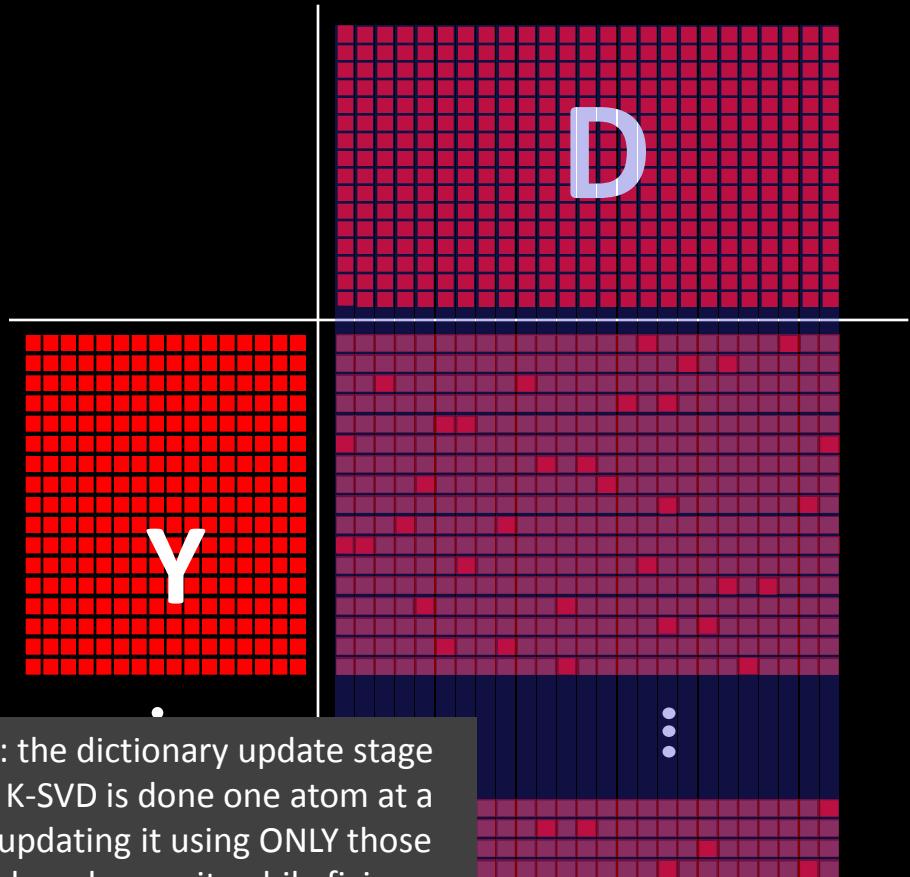
Engan et. al. ('99)

Gribonval et. al. ('04)

Aharon et. al. ('04)

# The Synthesis Model – K-SVD

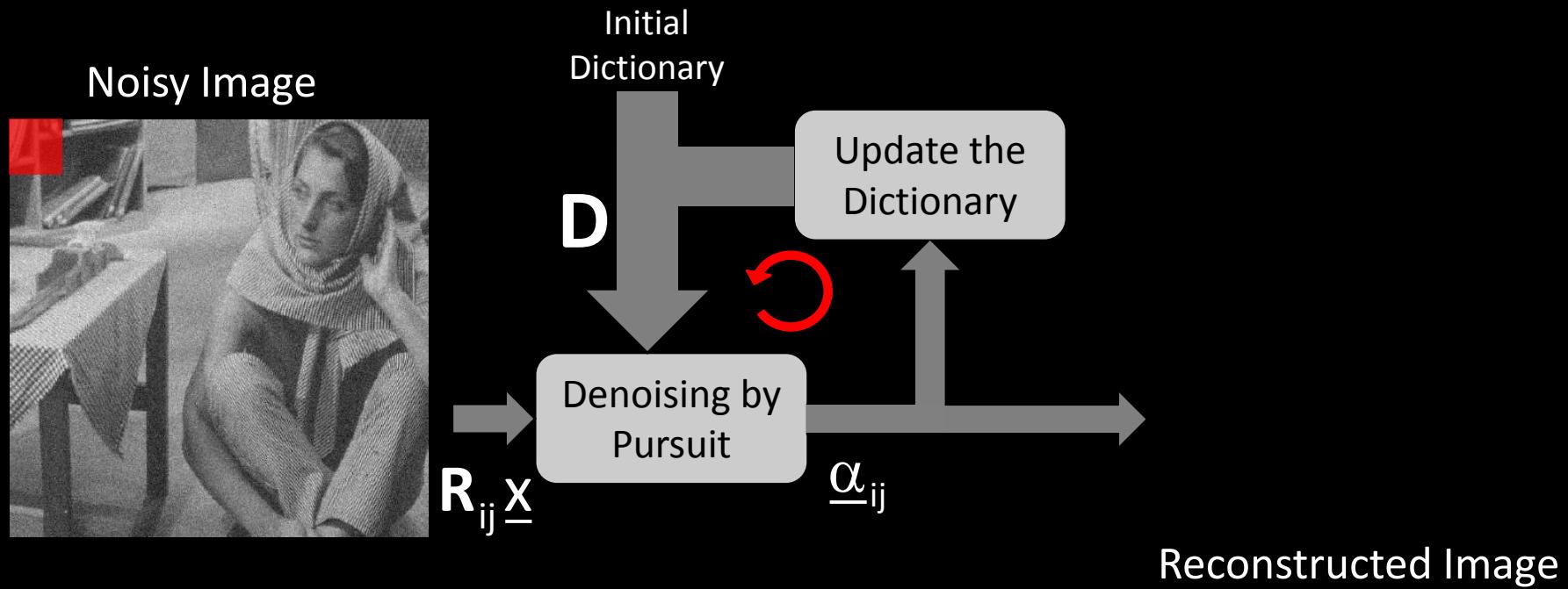
Aharon, Elad & Bruckstein ('04)



# Synthesis Model – Image Denoising

Elad & Aharon ('06)

$$\hat{\underline{x}} = \underset{\underline{x}, \{\underline{\alpha}_{ij}\}_j, \mathbf{D}}{\text{ArgMin}} \frac{1}{2} \|\underline{x} - \underline{y}\|_2^2 + \mu \sum_{ij} \|\mathbf{R}_{ij} \underline{x} - \mathbf{D} \underline{\alpha}_{ij}\|_2^2 \text{ s.t. } \|\underline{\alpha}_{ij}\|_0^0 \leq L$$



This method (and variants of it) leads to state-of-the-art results.

# Part II – Analysis? Source of Confusion

M. Elad, P. Milanfar, and R. Rubinstein, "Analysis Versus Synthesis in Signal Priors", *Inverse Problems*. Vol. 23, no. 3, pages 947-968, June 2007.

# Synthesis and Analysis Denoising

$$\underset{\underline{\alpha}}{\text{Min}} \left\| \underline{\alpha} \right\|_p^p \text{ s.t. } \left\| \mathbf{D}\underline{\alpha} - \underline{y} \right\|_2 \leq \varepsilon$$

Synthesis denoising



$$\underset{\underline{x}}{\text{Min}} \left\| \mathbf{\Omega}\underline{x} \right\|_p^p \text{ s.t. } \left\| \underline{x} - \underline{y} \right\|_2 \leq \varepsilon$$

Analysis Alternative

These two formulations serve the signal denoising problem, and both are used frequently and interchangeably with  $\mathbf{D}=\mathbf{\Omega}^\dagger$

# Case 1: $\mathbf{D}$ is square and invertible

Synthesis

$$\underset{\underline{\alpha}}{\text{Min}} \left\| \underline{\alpha} \right\|_p^p \text{ s.t. } \left\| \mathbf{D} \underline{\alpha} - \underline{y} \right\|_2 \leq \varepsilon$$

Analysis

$$\underset{\underline{x}}{\text{Min}} \left\| \Omega \underline{x} \right\|_p^p \text{ s.t. } \left\| \underline{x} - \underline{y} \right\|_2 \leq \varepsilon$$

Define  $\underline{x}$   
and thus  $\mathbf{D} \underline{x} = \underline{y}$

The Two are  
Exactly Equivalent

$$\underset{\underline{x}}{\text{Min}} \left\| \mathbf{D}^{-1} \underline{x} \right\|_p^p \text{ s.t. } \left\| \underline{x} - \underline{y} \right\|_2 \leq \varepsilon$$

# Case 2: Redundant $\mathbf{D}$ and $\Omega$

$$\left[ \begin{array}{c|c} \Omega & \mathbf{D} \end{array} \right]$$

Synthesis

$$\begin{aligned} \underline{\alpha} &= \Omega \underline{x} \\ \Rightarrow \Omega \underline{\alpha} &= \Omega^T \Omega \underline{x} \end{aligned}$$

$\left\| \mathbf{D} \underline{\alpha} - \underline{y} \right\|_2 \leq \varepsilon$

Analysis

$$\underset{\underline{x}}{\text{Min}} \left\| \Omega \underline{x} \right\|_p^p \text{ s.t. } \left\| \underline{x} - \underline{y} \right\|_2 \leq \varepsilon$$

$$\Rightarrow (\Omega^T \Omega)^{-1} \Omega^T \underline{\alpha} = \Omega^+ \underline{\alpha} = \underline{x}$$

Definition

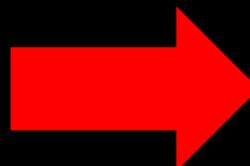
Exact Equivalence  
again ?

$$\underset{\underline{\alpha}}{\text{Min}} \left\| \underline{\alpha} \right\|_p^p \text{ s.t. } \left\| \Omega^+ \underline{\alpha} - \underline{y} \right\|_2 \leq \varepsilon$$

the  $\underline{\alpha} = \Omega \underline{x}$   
thus  $\Omega^+ \underline{\alpha} = \underline{x}$

# Not Really !

$$\begin{aligned}\underline{\alpha} &= \underline{\Omega} \underline{x} \\ \Rightarrow \underline{\Omega}^T \underline{\alpha} &= \underline{\Omega}^T \underline{\Omega} \underline{x} \\ \Rightarrow (\underline{\Omega}^T \underline{\Omega})^{-1} \underline{\Omega}^T \underline{\alpha} &= \underline{\Omega}^+ \underline{\alpha} = \underline{x}\end{aligned}$$



We should require  
 $\underline{\Omega} \underline{x} = \underline{\alpha} = \underline{\Omega} \underline{\Omega}^+ \underline{\alpha}$

The vector  $\underline{\alpha}$  defined by  $\underline{\alpha} = \underline{\Omega} \underline{x}$  must be spanned by the columns of  $\underline{\Omega}$ . Thus, what we actually got is the following analysis-equivalent formulation

$$\underset{\underline{\alpha}}{\text{Min}} \|\underline{\alpha}\|_p^p \text{ s.t. } \|\mathbf{D} \underline{\alpha} - \underline{y}\|_2 \leq \varepsilon \quad \& \quad \underline{\alpha} = \underline{\Omega} \underline{\Omega}^+ \underline{\alpha}$$

which means that **analysis  $\neq$  synthesis** in general.

# So, Which is Better? Which to Use?

- Our paper [Elad, Milanfar, & Rubinstein ('07)] was the first to draw attention to this dichotomy between analysis and synthesis, and the fact that the two may be substantially different.
- We concentrated on  $p=1$ , showing that
  - The two formulations refer to very different models,
  - The analysis is much richer, and
  - The analysis model may lead to better performance.
- In the past several years there is a growing interest in the analysis formulation (see recent work by Portilla et. al., Figueiredo et. al., Candes et. al., Shen et. al., Nam et. al., Fadiliy & Peyré, Kutyniok et. al., Ward and Needel, ...).
- Our goal: better understanding of the analysis model, its relation to the synthesis, and how to make the best of it in applications.

# Part III - Analysis

## A Different Point of View Towards the Analysis Model

1. S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "Co-sparse Analysis Modeling - Uniqueness and Algorithms" , ICASSP, May, 2011.
2. S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "The Co-sparse Analysis Model and Algorithms" , ACHA, Vol. 441, January 2014.



# The Analysis Model – Basics

- The analysis representation  $\underline{z}$  is expected to be sparse

$$\|\Omega \underline{x}\|_0 = \|\underline{z}\|_0 = p - \ell$$

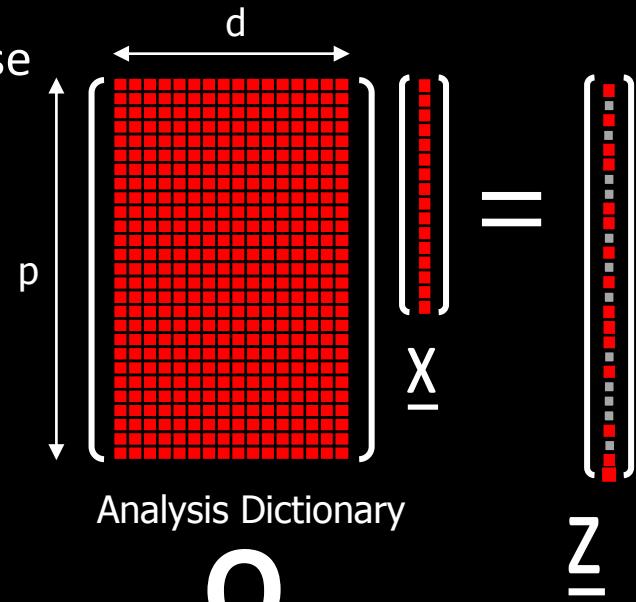
- Co-sparsity:  $\ell$  - the number of zeros in  $\underline{z}$ .

- Co-Support:  $\Lambda$  - the rows that are orthogonal to  $\underline{x}$

$$\Omega_\Lambda \underline{x} = 0$$

- If  $\Omega$  is in general position\*, then  $0 \leq \ell < d$  and thus we cannot expect to get a truly sparse analysis representation – Is this a problem? Not necessarily!

- This model puts an emphasis on the zeros in the analysis representation,  $\underline{z}$ , rather than the non-zeros, in characterizing the signal. This is much like the way zero-crossings of wavelets are used to define a signal [Mallat ('91)].

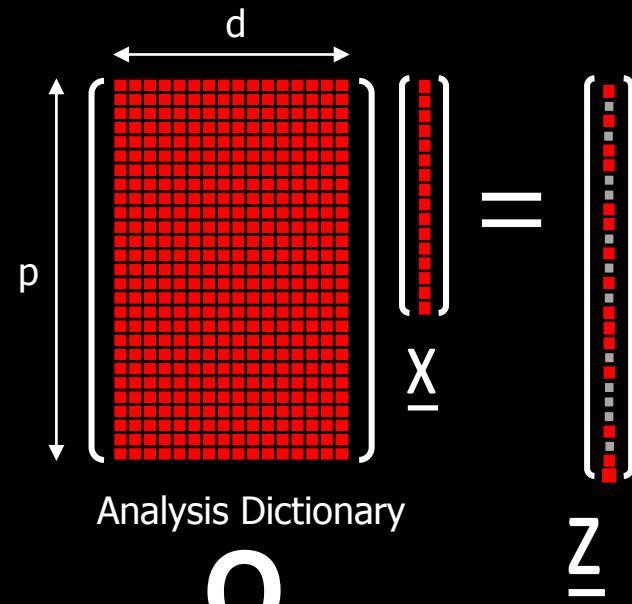


$$* \text{spark}\{\Omega^\top\} = d + 1$$

# The Analysis Model – Bayesian View

- Analysis signals, just like synthesis ones, can be generated in a systematic way:

|           | Synthesis Signals                                                     |
|-----------|-----------------------------------------------------------------------|
| Support:  | Choose the support $T$ ( $ T =k$ ) at random                          |
| Coef. :   | Choose $\underline{\alpha}_T$ at random                               |
| Generate: | Synthesize by:<br>$\mathbf{D}_T \underline{\alpha}_T = \underline{x}$ |


$$\underline{x} = \underline{z}$$

Analysis Dictionary

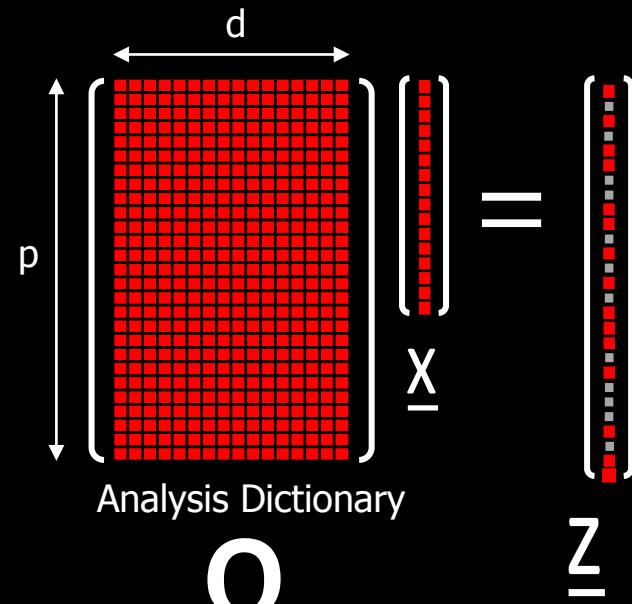
$\underline{\Omega}$

- Bottom line: an analysis signal  $\underline{x}$  satisfies:  $\exists \Lambda \mid |\Lambda| = \ell$  s.t.  $\underline{\Omega}_\Lambda \underline{x} = \underline{0}$

# The Analysis Model – UoS

- Analysis signals, just like synthesis ones, leads to a union of subspaces:

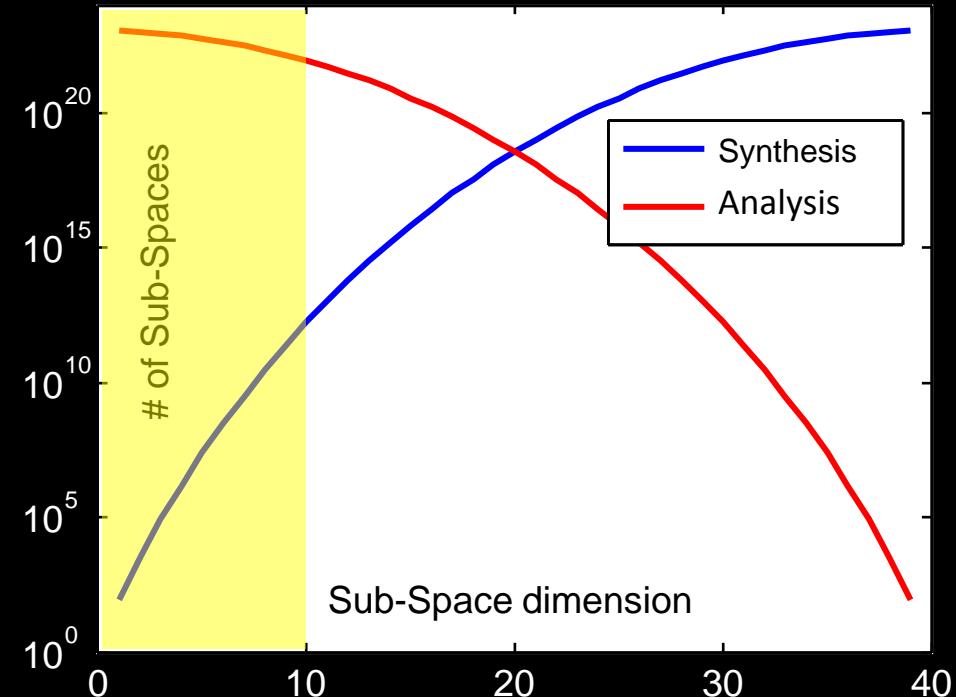
|                                 | Synthesis Signals             |
|---------------------------------|-------------------------------|
| What is the Subspace Dimension: | $k$                           |
| How Many Subspaces:             | $\binom{n}{k}$                |
| Who are those Subspaces:        | $\text{span}\{\mathbf{D}_T\}$ |



- The analysis and the synthesis models offer both a UoS construction, but these are very different from each other in general.

# The Analysis Model – Count of Subspaces

- Example:  $p=n=2d$ :
  - Synthesis:  $k=1$  (one atom) – there are  $2d$  subspaces of dimensionality 1.
  - Analysis:  $\ell=d-1$  leads to  $\binom{2d}{d-1} \gg O(2^d)$  subspaces of dimensionality 1.
- In the general case, for  $d=40$  and  $p=n=80$ , this graph shows the count of the number of subspaces. As can be seen, the two models are substantially different, the analysis model is much richer in low-dim., and the two complete each other.
- The analysis model tends to lead to a richer UoS. Are these good news?



# The Analysis Model – Pursuit

- Fundamental problem: Given the noisy measurements,

$$\underline{y} = \underline{x} + \underline{v}, \quad \exists |\Lambda| = \ell \text{ s.t. } \Omega_{\Lambda} \underline{x} = \underline{0}, \quad \underline{v} \sim \mathbf{N}\{\underline{0}, \sigma^2 \mathbf{I}\}$$

recover the clean signal  $\underline{x}$  – This is a denoising task.

- This goal can be posed as:

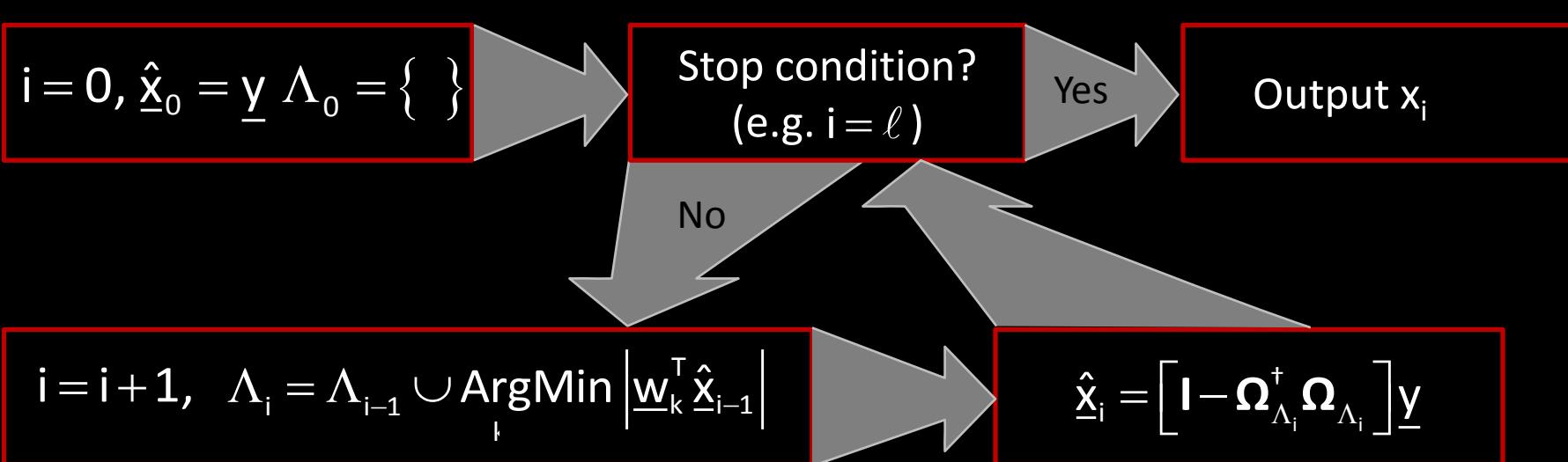
$$\hat{\underline{x}} = \underset{\underline{x}}{\text{ArgMin}} \left\| \underline{y} - \underline{x} \right\|_2^2 \text{ s.t. } \left\| \Omega \underline{x} \right\|_0 = p - \ell$$

- This is a (NP-) hard problem, just as in the synthesis case.
- We can approximate its solution by  $L_1$  replacing  $L_0$  (BP-analysis), Greedy methods (OMP, ...), and Hybrid methods (IHT, SP, CoSaMP, ...).
- Theoretical studies should provide guarantees for the success of these techniques, typically depending on the co-sparsity and properties of  $\Omega$ . This work has already started [Candès, Eldar, Needell, & Randall ('10)], [Nam, Davies, Elad, & Gribonval, ('11)], [Vaiter, Peyré, Dossal, & Fadili, ('11)], [Giryes et. al. ('12)].

# The Analysis Model – Backward Greedy

BG finds one row at a time from  $\Lambda$  for approximating the solution of

$$\hat{\underline{x}} = \underset{\underline{x}}{\text{ArgMin}} \left\| \underline{y} - \underline{x} \right\|_2^2 \text{ s.t. } \left\| \Omega \underline{x} \right\|_0 = p - \ell$$



# The Analysis Model – Backward Greedy

Is there a similarity to a synthesis pursuit algorithm?

Synthesis  
OMP

$i = 0$

Other options:

- A Gram-Schmidt acceleration of this algorithm.
- Optimized BG pursuit (xBG) [Rubinstein, Peleg & Elad ('12)]
- Greedy Analysis Pursuit (GAP) [Nam, Davies, Elad & Gribonval ('11)]
- Iterative Cosparse Projection [Giry, Nam, Gribonval & Davies ('11)]
- $L_p$  relaxation using IRLS [Rubinstein ('12)]
- CoSaMP, SP, IHT and IHP analysis algorithms [Giry, Nam, Gribonval & Davies ('12)]

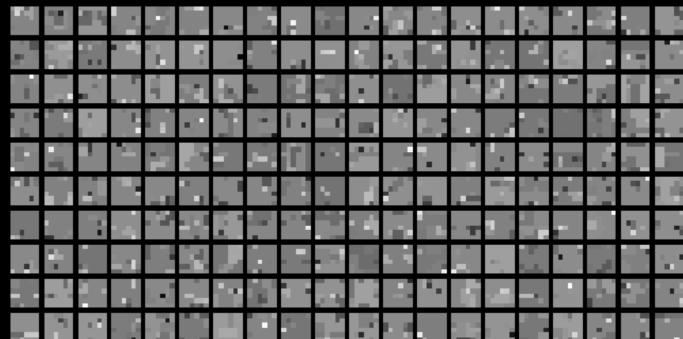
Output

$= y - r_i$

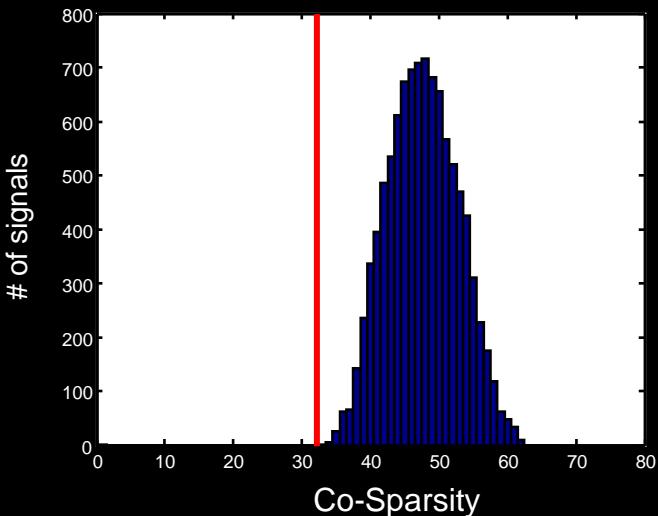
$i =$

# The Analysis Model – Low-Spark $\Omega$

- What if  $\text{spark}(\Omega^T) < d$  ?
- For example: a TV-like operator for image-patches of size  $6 \times 6$  pixels ( $\Omega$  size is  $72 \times 36$ ).
- Here are analysis-signals generated for co-sparsity ( $\ell$ ) of 32:



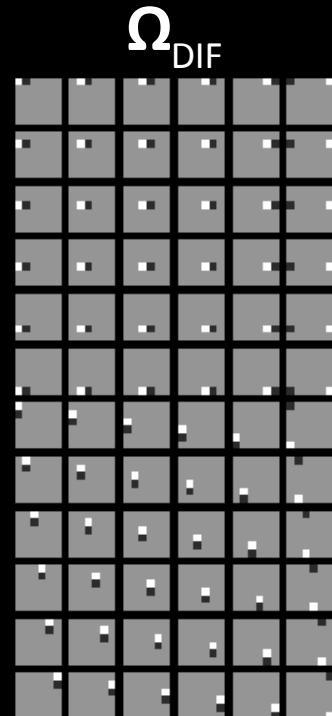
$$\Omega = \begin{bmatrix} \text{Horizontal} \\ \text{Derivative} \\ \hline \text{Vertical} \\ \text{Derivative} \end{bmatrix} = \begin{matrix} \text{Horizontal Derivative} \\ \text{Vertical Derivative} \end{matrix}$$



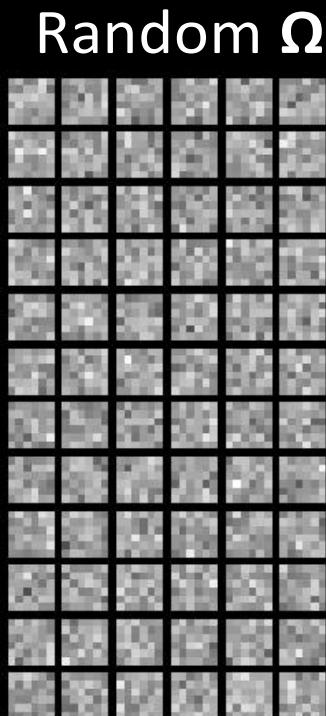
- Their true co-sparsity is higher – see graph:
- In such a case we may consider  $\ell > d$ , and thus
- ... the number of subspaces is smaller,  
because creating signals of dimension 4 implies choosing 32 linearly-independent rows from  $\Omega$ , and the number of such cases is MUCH smaller than  $p\text{-choose-}32$

# The Analysis Model – The Signature

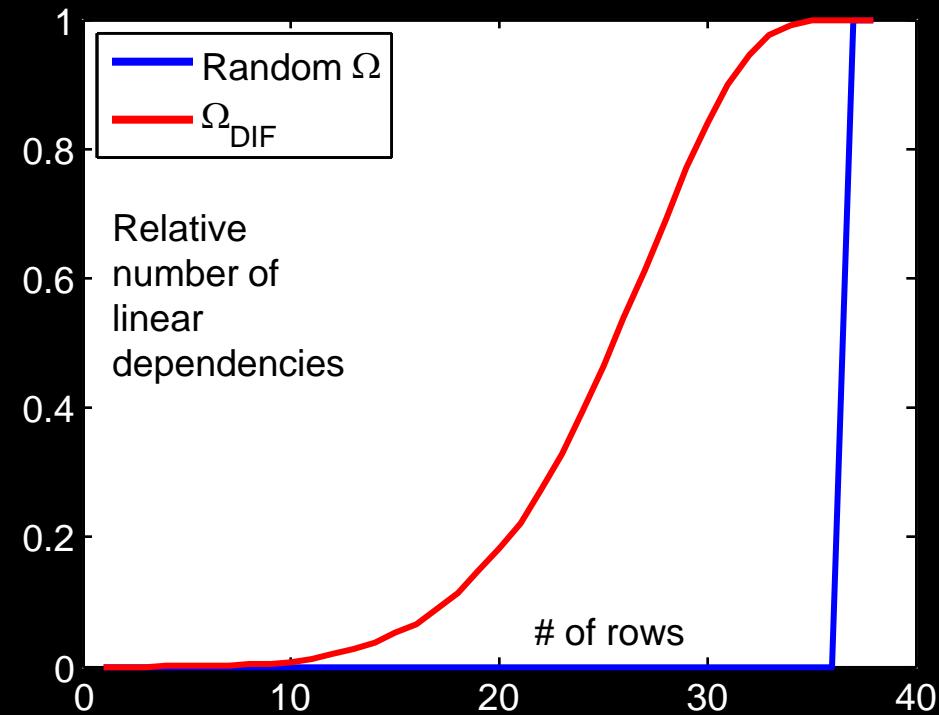
Consider two possible dictionaries:



$$\text{Spark}(\Omega^T) = 4$$



$$\text{Spark}(\Omega^T) = 37$$



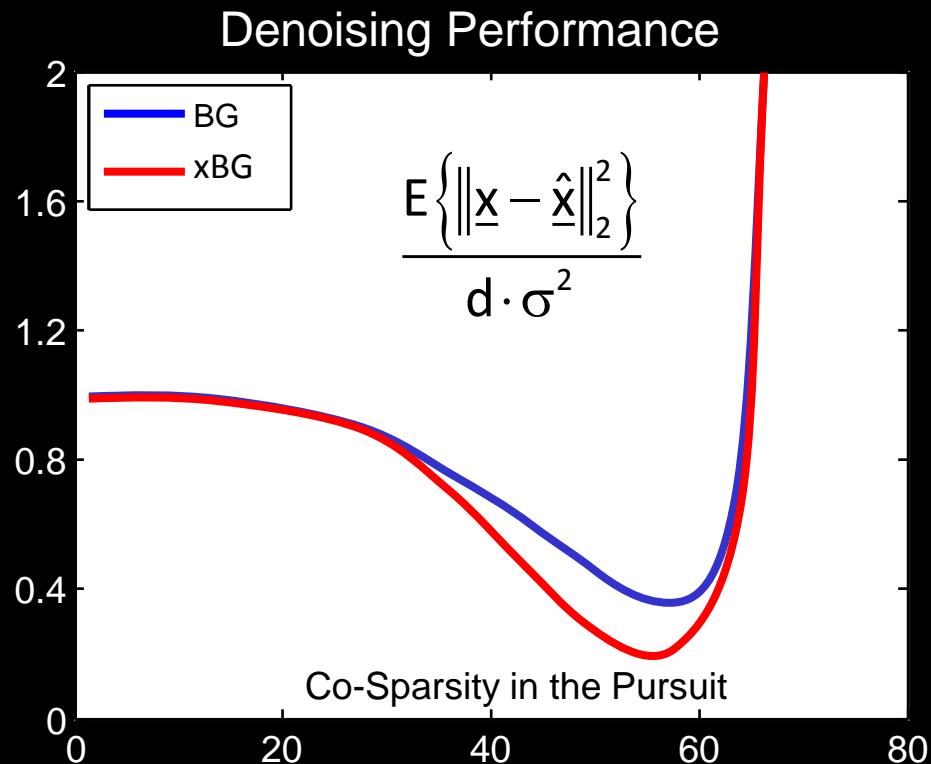
The Signature of a matrix is more informative than the Spark

# The Analysis Model – Low-Spark $\Omega$ – Pursuit

- An example – performance of BG (and xBG) for these TV-like signals:
- 1000 signal examples, SNR=25.



- We see an effective denoising, attenuating the noise by a factor  $\sim 0.2$ . This is achieved for an effective co-sparsity of  $\sim 55$ .



# Synthesis vs. Analysis – Summary

- The two align for  $p=n=d$  : non-redundant.
- Just as the synthesis, we should work on:
  - Pursuit algorithms (of all kinds) – Design.
  - Pursuit algorithms (of all kinds) – Theoretical study.
  - Dictionary learning from example-signals.
  - Applications ...
- Our work on the analysis model so far touched on all the above. In this talk we shall focus on:
  - A theoretical study of the simplest pursuit method: Analysis-THR.
  - Developing a K-SVD like dictionary learning method for the analysis model.

$$\begin{matrix} & \xrightarrow{m} \\ \uparrow d & \left[ \begin{matrix} \mathbf{D} \end{matrix} \right] \end{matrix} = \left[ \begin{matrix} \mathbf{a} \\ \mathbf{x} \end{matrix} \right]$$

$$\begin{matrix} & \xrightarrow{d} \\ \uparrow p & \left[ \begin{matrix} \boldsymbol{\Omega} \end{matrix} \right] \end{matrix} = \left[ \begin{matrix} \mathbf{z} \\ \mathbf{x} \end{matrix} \right]$$

# Part IV – THR Performance

## Revealing Important Dictionary Properties

1. T. Peleg and M. Elad, Performance Guarantees of the Thresholding Algorithm for the Co-Sparse Analysis Model, IEEE Trans. on Information Theory, Vol. 59, March 2013.



# The Analysis-THR Algorithm

Analysis-THR aims to find an approximation for the problem

$$\hat{\underline{x}} = \underset{\underline{x}, \Lambda}{\text{ArgMin}} \left\| \underline{y} - \underline{x} \right\|_2^2 \text{ s.t. } \left\{ \underline{\Omega}_\Lambda \underline{x} = 0 \quad \& \quad \text{Rank}(\underline{\Omega}_\Lambda) = d - r \right\}$$

Compute  $\underline{z} = |\underline{\Omega} \underline{y}|$  & sort  
(increasing)  $\rightarrow \{\gamma_k\}_{k=1}^p$

$$i = 0, \Lambda_0 = \{ \}$$

Stop condition?  
 $\text{Rank}(\underline{\Omega}_{\Lambda_i}) = d - r$

Yes

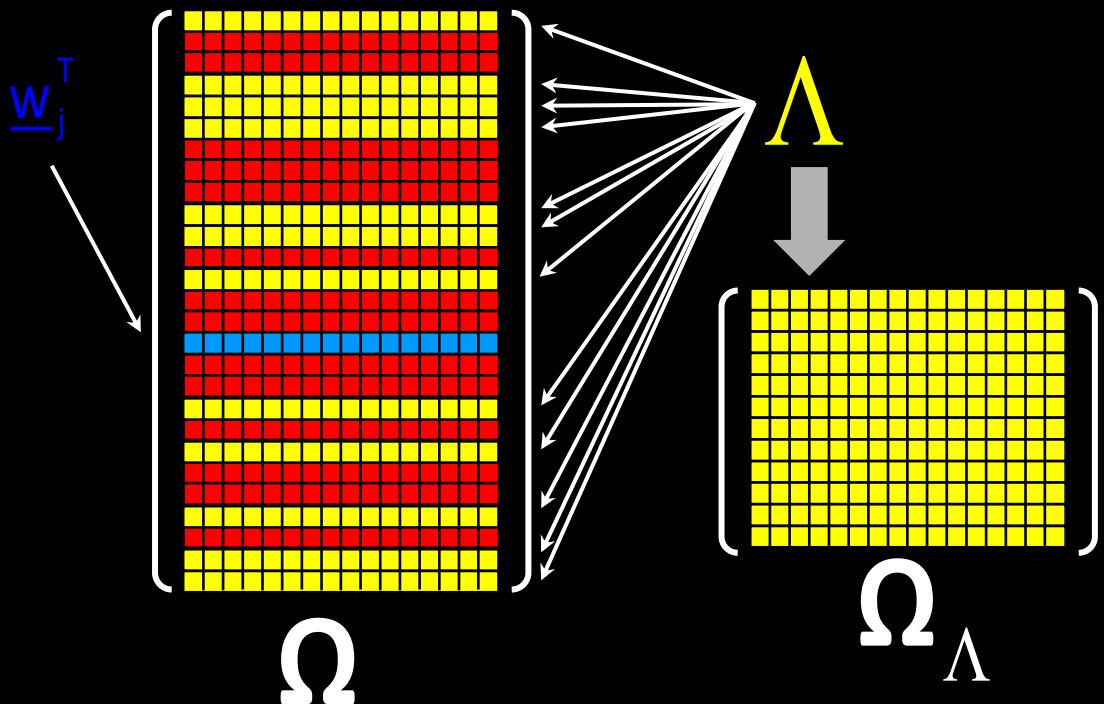
Output  
 $\hat{\underline{x}} = [\mathbf{I} - \underline{\Omega}_{\Lambda_i}^\dagger \underline{\Omega}_{\Lambda_i}] \underline{y}$

No

$$i = i + 1, \Lambda_i = \Lambda_{i-1} \cup \gamma_i$$

# The Restricted Ortho. Projection Property

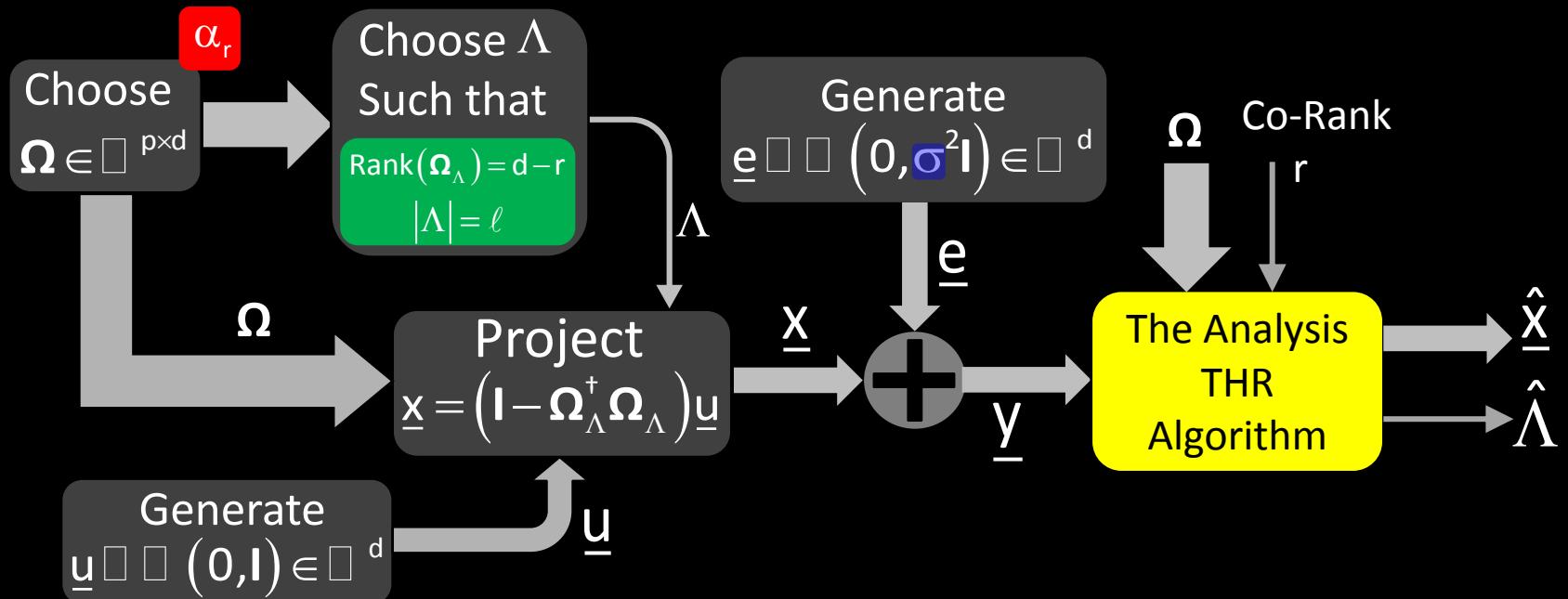
$$\alpha_r = \min_{\Lambda, j \left| \begin{array}{l} \text{Rank}(\Omega_\Lambda) = d-r \\ \text{and } j \notin \Lambda \end{array} \right.} \left\| (\mathbf{I} - \Omega_\Lambda^\dagger \Omega_\Lambda) \underline{w}_j \right\|_2$$



- ROPP aims to get near orthogonality of rows outside the co-support (i.e.,  $\alpha_r$  should be as close as possible to 1).
- This should remind of the (synthesis) ERC [Tropp ('04)]:

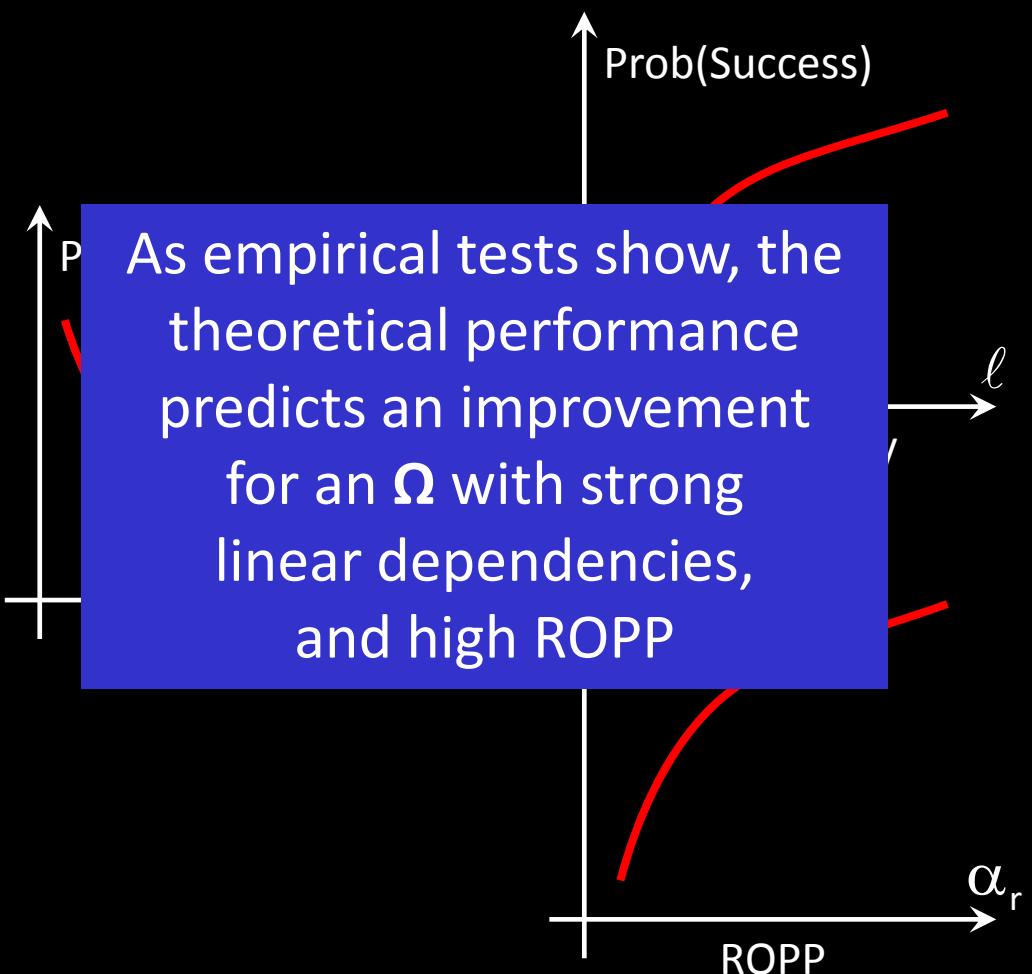
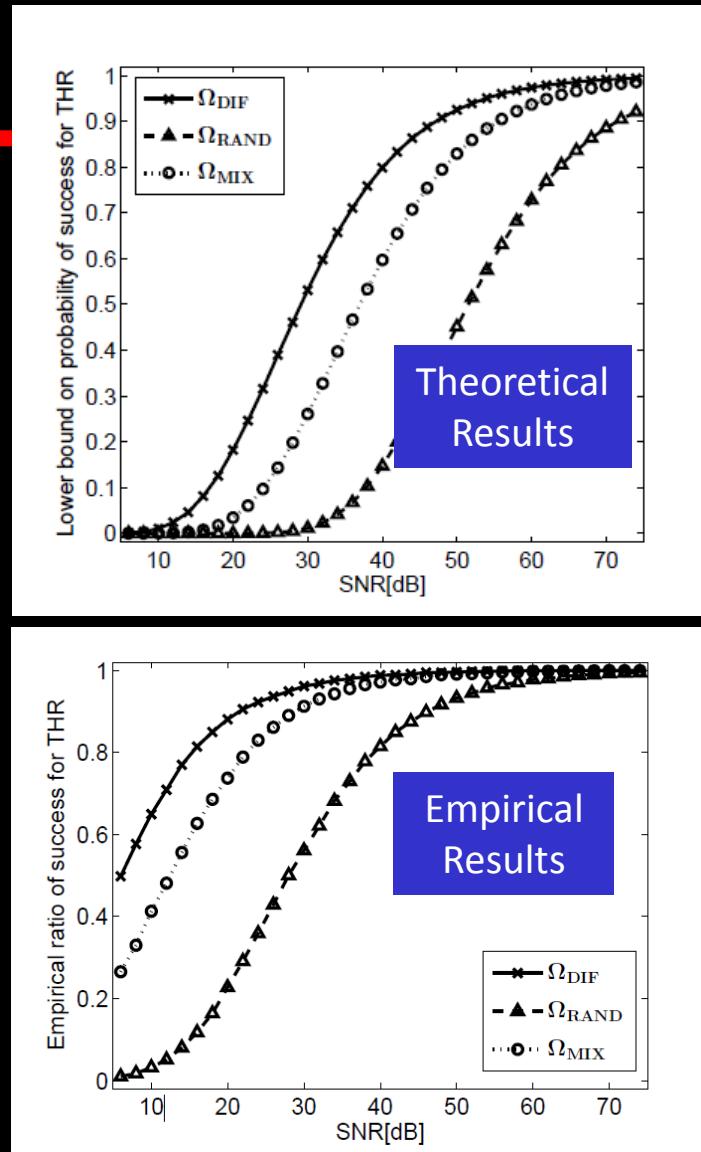
$$\max_{S, j \left| |S|=k \text{ and } j \notin S \right.} \left\| \mathbf{D}_S^\dagger \underline{d}_j \right\|_1 \leq 1$$

# Theoretical Study of the THR Algorithm



$$\Pr\{\text{success}(\text{i.e. } \hat{\Lambda} = \Lambda)\}$$

# Implications



# Part V – Dictionaries

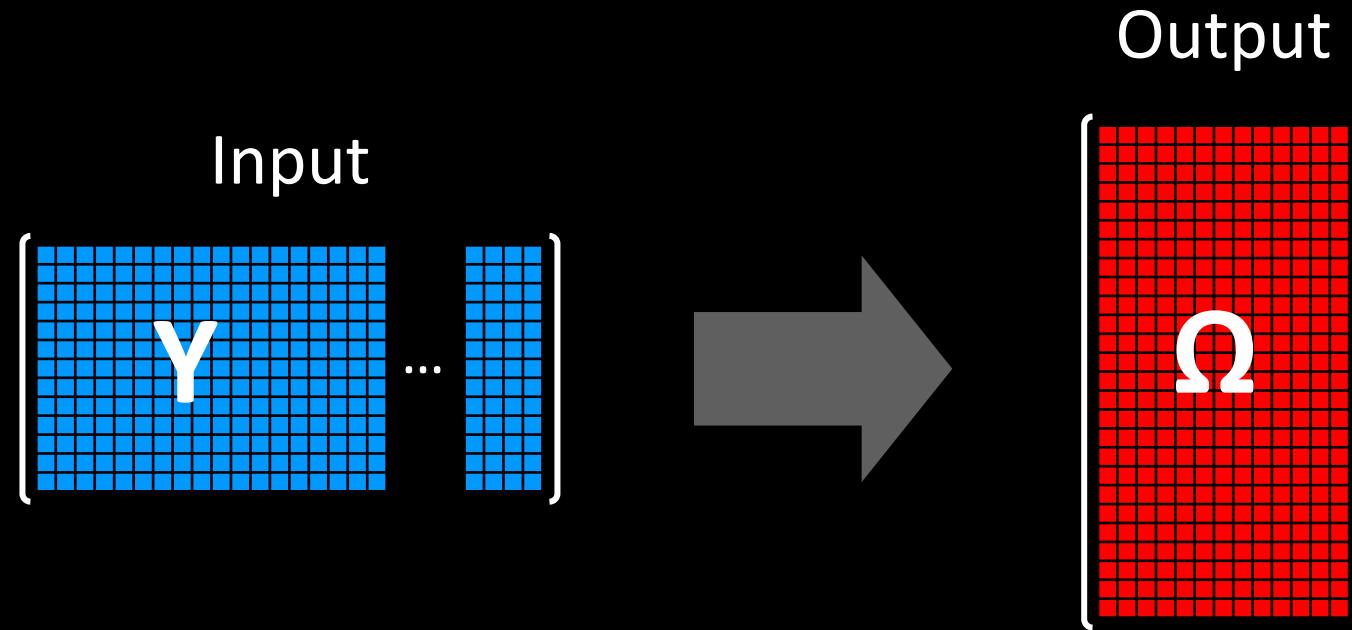
## Analysis

# Dictionary-Learning by K-SVD-Like Algorithm

1. B. Ophir, M. Elad, N. Bertin and M.D. Plumbley, "Sequential Minimal Eigenvalues - An Approach to Analysis Dictionary Learning", EUSIPCO, August 2011.
2. R. Rubinstein T. Peleg, and M. Elad, "Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model", IEEE-TSP, Vol. 61, March 2013.

# Analysis Dictionary Learning – The Goal

**Goal:** given a set of signals, find the analysis dictionary  $\Omega$  that best fit them



# Analysis Dictionary Learning – The Signals

We are given a set of  $N$  contaminated (noisy) analysis signals, and our goal is to recover their analysis dictionary,  $\Omega$

$$\left\{ \underline{y}_j = \underline{x}_j + \underline{v}_j, \quad \exists |\Lambda_j| = \ell \quad \text{s.t.} \quad \boldsymbol{\Omega}_{\Lambda_j} \underline{x}_j = \underline{0}, \quad \underline{v} \sim \mathbf{N}\left(\underline{0}, \sigma^2 \mathbf{I}\right) \right\}_{j=1}^N$$

# Analysis Dictionary Learning – Goal

$$\underset{D, A}{\text{Min}}$$

$$\|DA - Y\|_F^2$$

$$\underset{\Omega, X}{\text{Min}}$$

$$\|X - Y\|_F^2$$

Noisy Examples

Synthesis

$$\text{s.t. } \forall j = 1, 2, \dots, N \quad \|\underline{\alpha}_j\|_0 \leq k$$

Analysis

$$\text{s.t. } \forall j = 1, 2, \dots, N \quad \|\Omega \underline{x}_j\|_0 \leq p - \ell$$

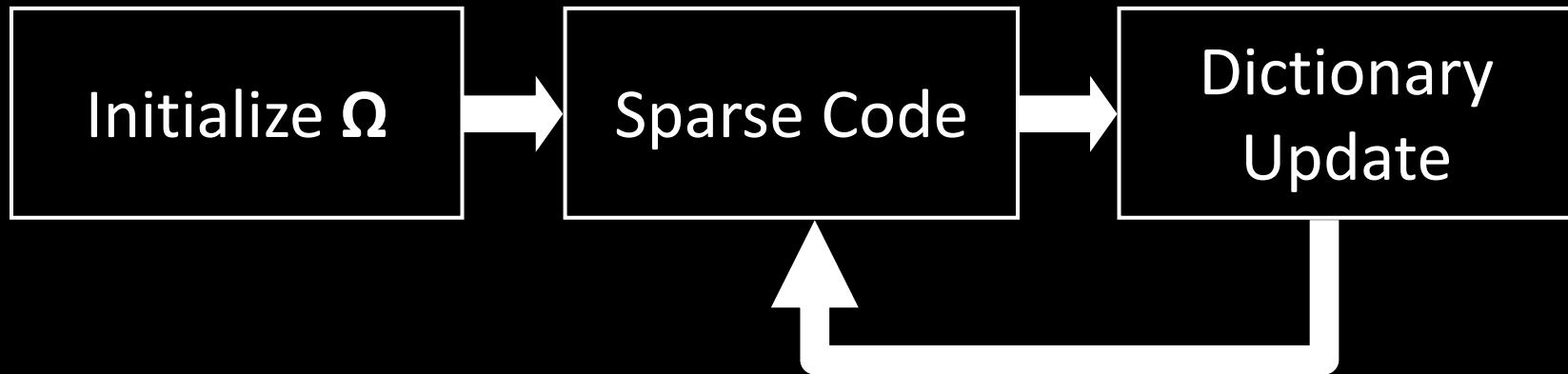
Denoised Signals are  $L_0$  Sparse

We shall adopt a similar approach to the K-SVD for  
approximating the minimization of the analysis goal

# Analysis K-SVD – Outline

[Rubinstein, Peleg & Elad ('12)]

$$\left[ \begin{array}{|c|c|c|c|} \hline \Omega & & & \\ \hline \end{array} \right] \left[ \begin{array}{|c|c|c|c|} \hline \mathbf{X} & \dots & & \\ \hline \end{array} \right] = \left[ \begin{array}{|c|c|c|c|} \hline \mathbf{Z} & \dots & & \\ \hline \end{array} \right]$$



# Analysis K-SVD – Sparse-Coding Stage

$$\left[ \begin{array}{c|c} \Omega & \end{array} \right] \left[ \begin{array}{c|c} X & \cdots \end{array} \right] = \left[ \begin{array}{c|c} Z & \cdots \end{array} \right]$$

$$\underset{\Omega, \mathbf{x}}{\text{Min}} \quad \|\mathbf{X} - \mathbf{Y}\|_F^2 \quad \text{s.t. } \forall j = 1, 2, \dots, N \quad \left\| \Omega \underline{\mathbf{x}}_j \right\|_0 \leq p - \ell$$

Assuming that  $\Omega$  is fixed, we aim at updating  $X$

$$\left\{ \hat{\underline{x}}_j = \underset{\underline{x}}{\text{ArgMin}} \left\| \underline{x} - \underline{y}_j \right\|_2^2 \text{ s.t. } \left\| \Omega \underline{x} \right\|_0 \leq p - \ell \right\}_{j=1}^N$$

These are  $N$  separate analysis-pursuit problems. We suggest to use the BG or the xBG algorithms.

# Analysis K-SVD – Dictionary Update Stage

$$\left[ \begin{array}{c|c} \Omega & \\ \hline & \end{array} \right] \left[ \begin{array}{c|c} X & \dots \\ \hline & \end{array} \right] = \left[ \begin{array}{c|c} Z & \dots \\ \hline & \end{array} \right]$$

$$\underset{\Omega, x}{\text{Min}} \quad \|X - Y\|_F^2 \quad \text{s.t. } \forall j = 1, 2, \dots, N \quad \|\Omega x_j\|_0 \leq p - \ell$$

- Only signals orthogonal to the atom should get to vote for its new value.
- The known supports should be preserved.

# Analysis Dictionary – Dic. Update (2)

After the sparse-coding,  $\Lambda_j$  are known. We now aim at updating a row (e.g.  $\underline{w}_k^T$ ) from  $\Omega$

We use only the signals  $S_k$  that are found orthogonal to  $\underline{w}_k$

$$\underset{\underline{w}_k, \underline{x}_k}{\text{Min}} \quad \|\underline{X}_k - \underline{Y}_k\|_2^2 \quad \text{s.t.}$$

Each of the chosen examples should be orthogonal to the new row  $\underline{w}_k$

$$\forall j \in S_k \quad \underline{\Omega}_j \underline{x}_j = \underline{0}$$

$$\underline{w}_k^T \underline{X}_k = \underline{0}$$

$$\|\underline{w}_k\|_2 = 1$$

Each example should keep its co-support  $\Lambda_j \setminus k$

Avoid trivial solution

# Analysis Dictionary – Dic. Update (3)

$$\underset{\underline{w}_k, \underline{x}_k}{\text{Min}} \quad \|\underline{\mathbf{X}}_k - \underline{\mathbf{Y}}_k\|_2^2 \quad \text{s.t.} \quad \left\{ \begin{array}{l} \forall j \in S_k \quad \underline{\Omega}_j \underline{x}_j = \underline{0} \\ \underline{w}_k^T \underline{\mathbf{X}}_k = \underline{0} \\ \|\underline{w}_k\|_2 = 1 \end{array} \right\}$$

This problem we have defined is too hard to handle



Intuitively, and in the spirit of the K-SVD, we could suggest the following alternative

$$\underset{\underline{w}_k, \underline{x}_k}{\text{Min}} \quad \left\| \underline{\mathbf{X}}_k - \underline{\Omega} \left[ \underline{\mathbf{X}}_k \right] \underline{\mathbf{Y}}_k \right\|_2^2 \quad \text{s.t.} \quad \left\{ \begin{array}{l} \underline{w}_k^T \underline{\mathbf{X}}_k = \underline{0} \\ \|\underline{w}_k\|_2 = 1 \end{array} \right\}$$

**wrong!**



# Analysis Dictionary – Dic. Update (4)

A better approximation for our original problem is

$$\underset{\underline{w}_k, \mathbf{X}_k}{\text{Min}} \quad \|\mathbf{X}_k - \mathbf{Y}_k\|_2^2 \quad \text{s.t.} \quad \left\{ \begin{array}{l} \forall j \in S_k \quad \underline{\Omega}_{j, \mathbf{X}_k} = 0 \\ \underline{w}_k^T \mathbf{X}_k = 0 \\ \|\underline{w}_k\|_2 = 1 \end{array} \right\}$$

which is equivalent to

$$\underset{\underline{w}_k}{\text{Min}} \quad \|\underline{w}_k^T \mathbf{Y}_k\|_2^2 \quad \text{s.t.} \quad \|\underline{w}_k\|_2 = 1$$

The obtained problem is a simple eigenvalue approximation problem, easily given by SVD

# Part VI – Results

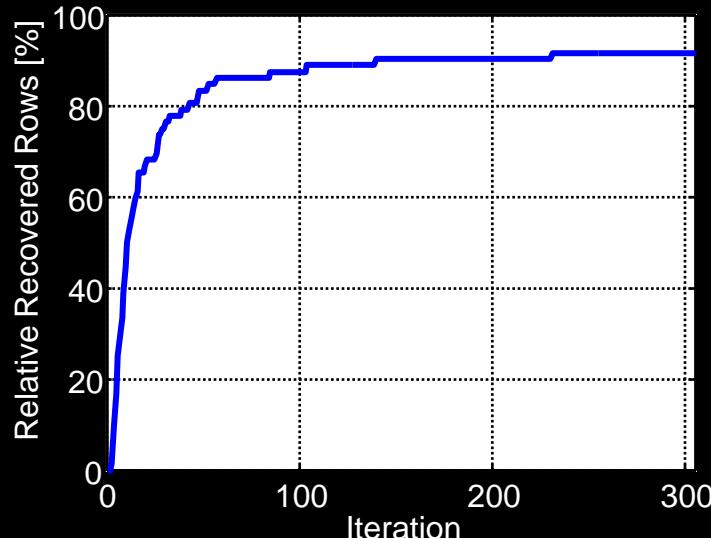
## For Dictionary-Learning and Image Denoising



# Analysis Dictionary Learning – Results (1)

## Synthetic experiment #1: TV-Like $\Omega$

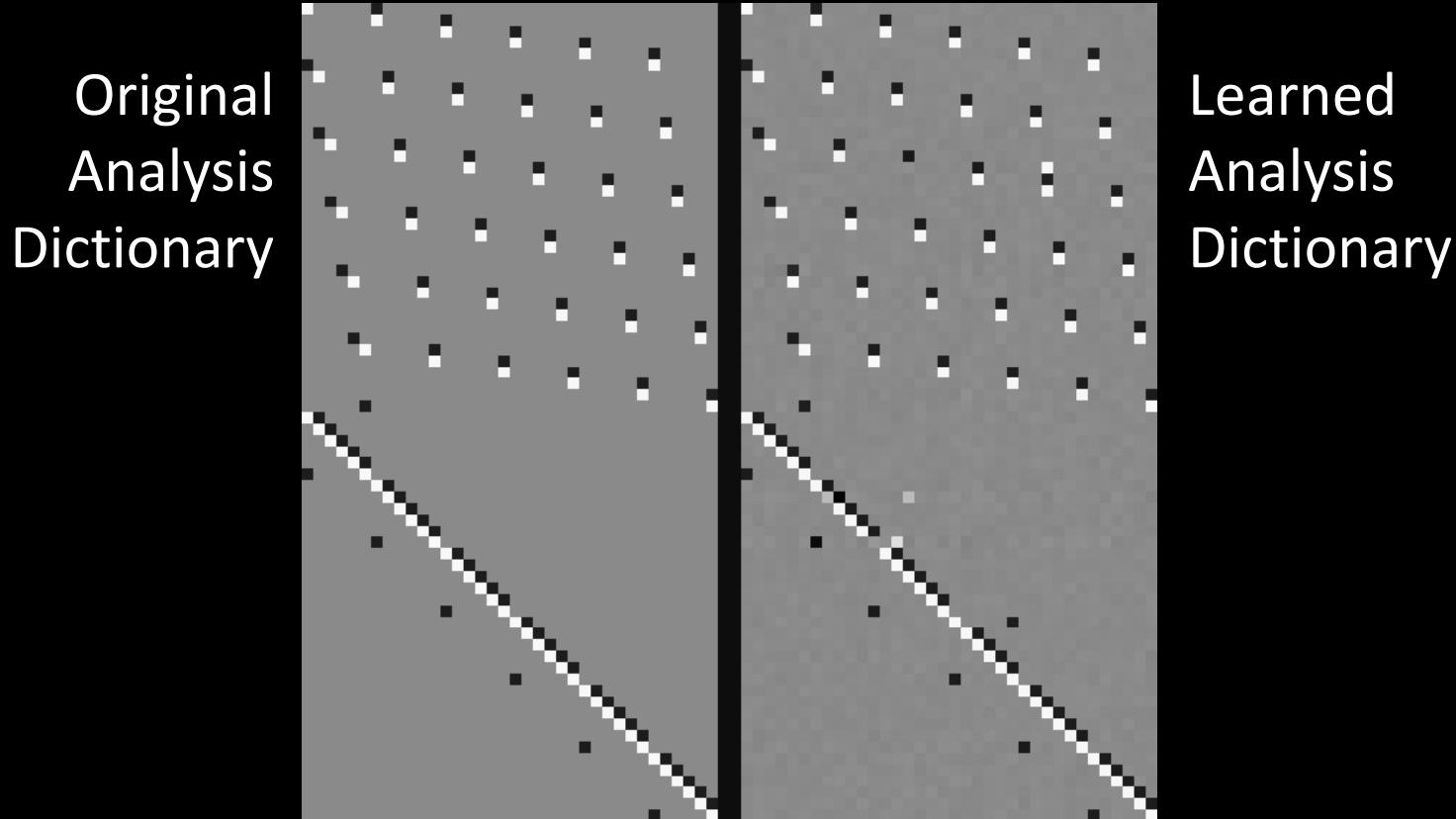
- We generate 30,000 TV-like signals of the same kind described before ( $\Omega: 72 \times 36, \ell=32$ )
- We apply 300 iterations of the Analysis K-SVD with BG (fixed  $\ell$ ), and then 5 more using the xBG
- Initialization by orthogonal vectors to randomly chosen sets of 35 examples
- Additive noise: SNR=25. atom detected if:  $1 - |\underline{w}^T \hat{w}| < 0.01$



Even though we have not identified  $\Omega$  completely (~92% this time), we got an alternative **feasible** analysis dictionary with the same number of zeros per example, and a residual error within the noise level.

# Analysis Dictionary Learning – Results (1)

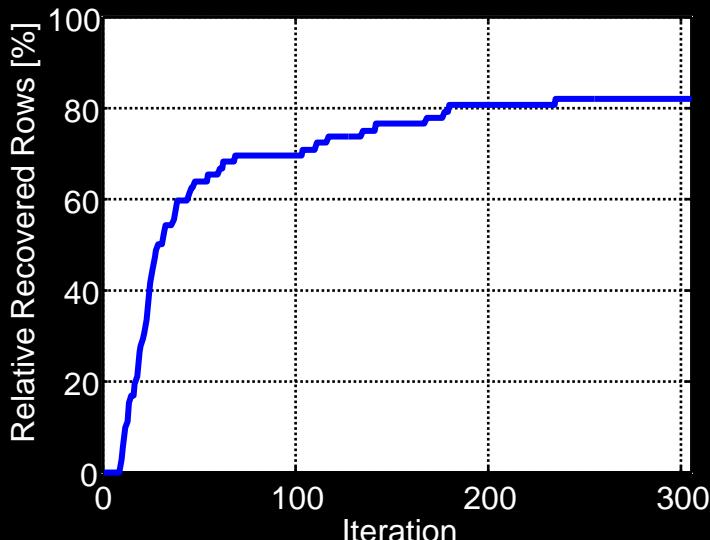
Synthetic experiment #1: TV-Like  $\Omega$



# Analysis Dictionary Learning – Results (2)

## Synthetic experiment #2: Random $\Omega$

- ❑ Very similar to the above, but with a random (full-spark) analysis dictionary  $\Omega: 72 \times 36$
- ❑ Experiment setup and parameters: the very same as above
- ❑ In both algorithms: replacing BG by xBG (in both experiments) leads to a consistent descent in the relative error, and better recovery results.



As in the previous example, even though we have not identified  $\Omega$  completely ( $\sim 80\%$  this time), we got an alternative **feasible** analysis dictionary with the same number of zeros per example, and a residual error within the noise level.

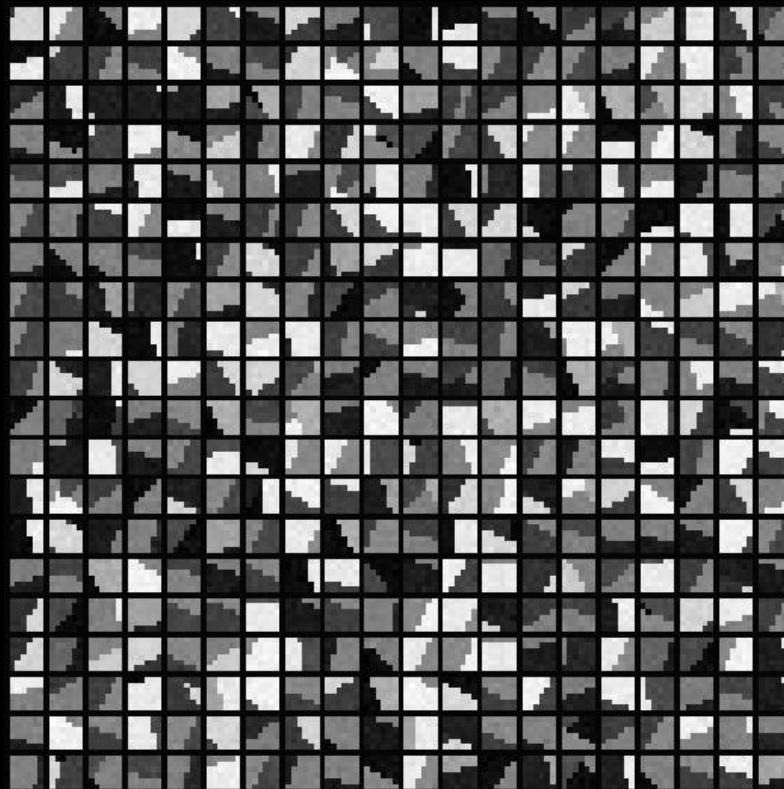
# Analysis Dictionary Learning – Results (3)

## Experiment #3: Piece-Wise Constant Image

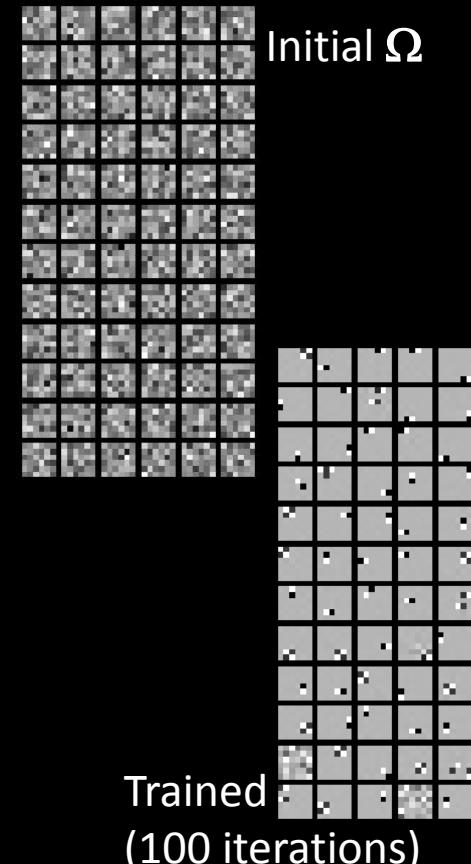
- We take 10,000 patches (+noise  $\sigma=5$ ) to train on
- Here is what we got  
**we promote sparse outcome**



Original Image



Patches used for training



Trained  
(100 iterations)  
 $\Omega$

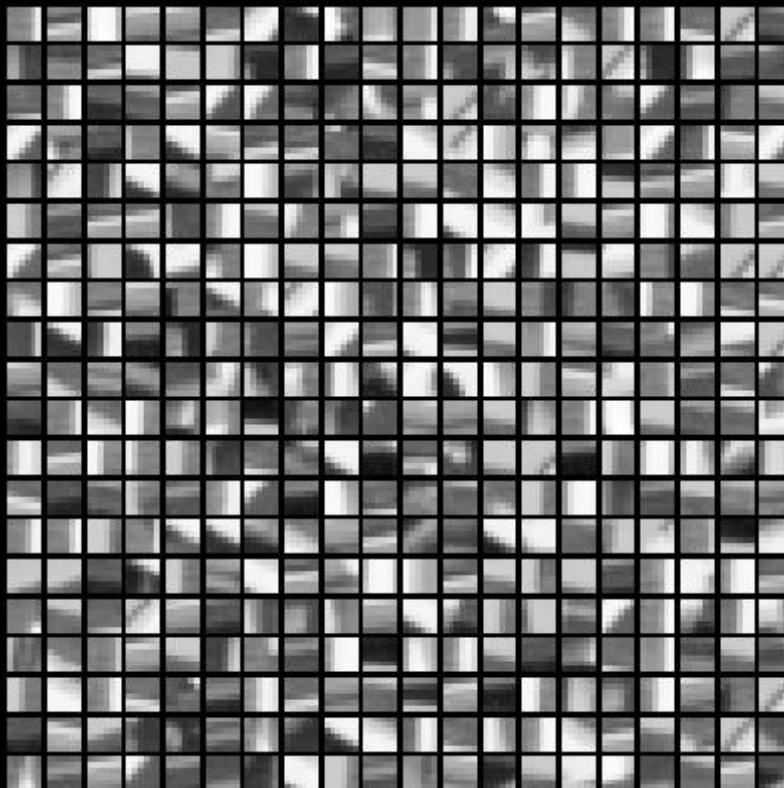
# Analysis Dictionary Learning – Results (4)

## Experiment #4: The Image “House”

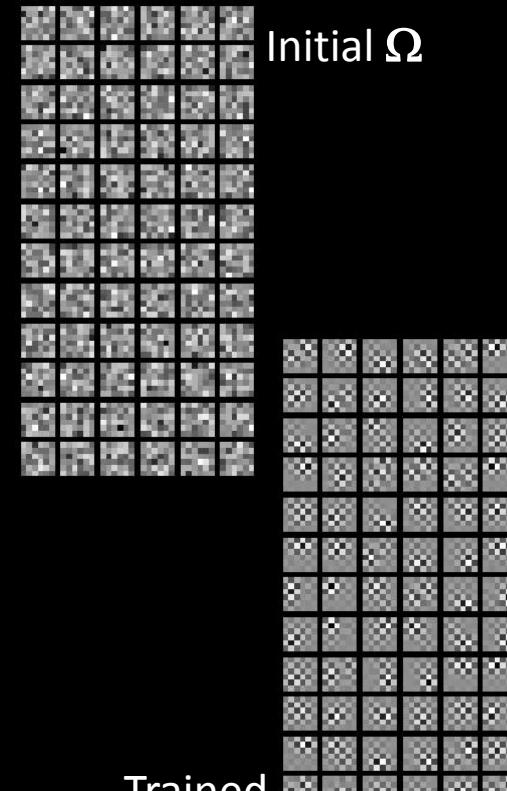
- We take 10,000 patches (+noise  $\sigma=10$ ) to train on
- Here is what we got:



Original Image



Patches used for training



Trained  
(100 iterations)  
 $\Omega$

# Analysis Dictionary Learning – Results (5)

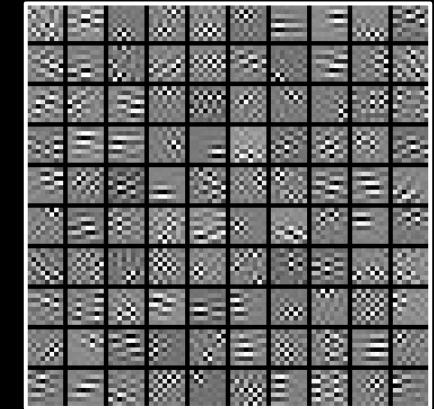
## Experiment #5: A set of Images

- We take 5,000 patches from each image to train on.
- Block-size  $8 \times 8$ , dictionary size  $100 \times 64$ . Co-sparsity set to 36.
- Here is what we got:



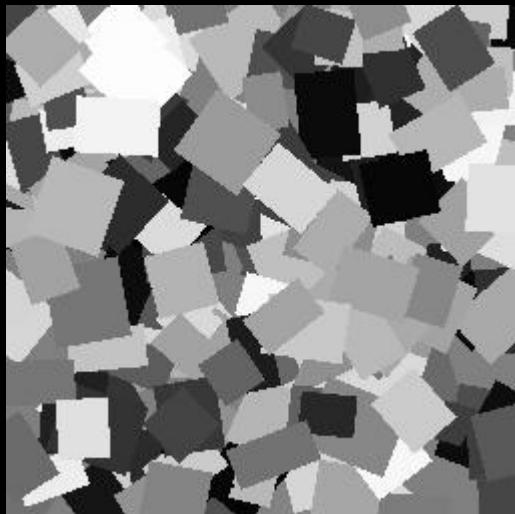
Original Images

Localized and oriented atoms

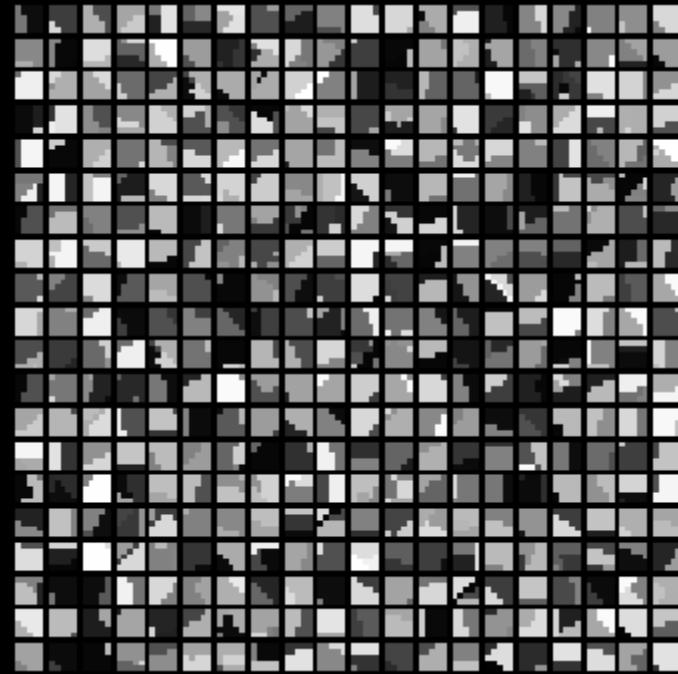


Trained  $\Omega$   
(100 iterations)

# Back to Image Denoising – (1)



256×256



Non-flat patch examples

# Back to Image Denoising – (2)

## □ **Synthesis K-SVD Dictionary Learning:**

- Training set – 10,000 noisy non-flat 5x5 patches.
- Initial dictionary – 100 atoms generated at random from the data.
- 10 iterations – sparsity-based OMP with  $k=3$  for each patch example.  
(dimension 4, 3 atoms + DC) + K-SVD atom update.

## □ **Patch Denoising** – error-based OMP with $\varepsilon^2=1.3d\sigma^2$ .

## □ **Image Reconstruction** – Average overlapping patch recoveries.

# Back to Image Denoising – (3)

## □ Analysis K-SVD Dictionary Learning

- Training set – 10,000 noisy non-flat 5x5 patches.
- Initial dictionary – 50 rows generated at random from the data.
- 10 iterations – rank-based OBG with  $r=4$  for each patch example + constrained atom update (sparse zero-mean atoms).
- Final dictionary – keep only 5-sparse atoms.

## □ Patch Denoising – error-based OBG with $\varepsilon^2=1.3d\sigma^2$ .

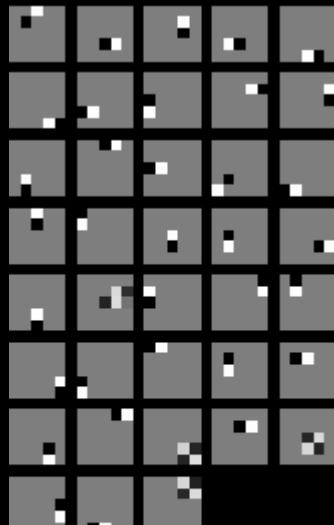
## □ Image Reconstruction – Average overlapping patch recoveries.



# Back to Image Denoising – (4)

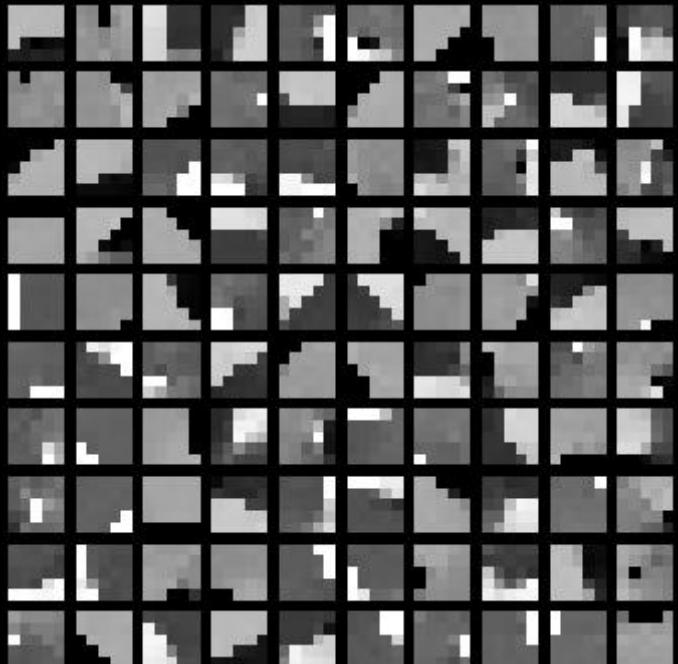
Learned dictionaries for  $\sigma=5$

Analysis Dictionary



38 atoms

Synthesis Dictionary



100 atoms



# Back to Image Denoising – (5)

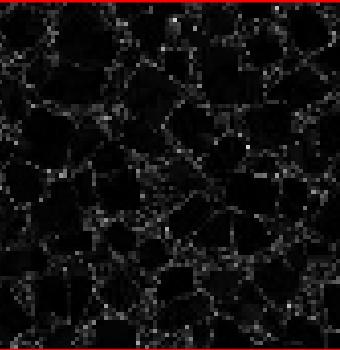
|                               | BM3D | Synthesis<br>K-SVD |      | Analysis<br>K-SVD |             |
|-------------------------------|------|--------------------|------|-------------------|-------------|
| Average subspace<br>dimension | n/a  | 2.42               | 2.03 | <b>1.75</b>       | <b>1.74</b> |
|                               |      | 1.79               | 1.69 | <b>1.51</b>       | <b>1.43</b> |

Cell Legend:

|             |             |
|-------------|-------------|
| $\sigma=5$  | $\sigma=10$ |
| $\sigma=15$ | $\sigma=20$ |



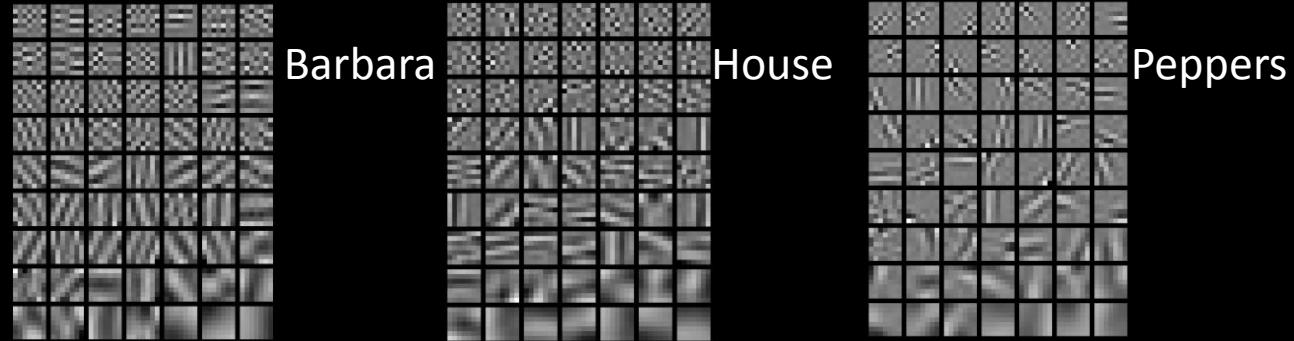
# Back to Image Denoising – (6)

|                                    | BM3D                                                                               | Synthesis K-SVD                                                                     | Analysis K-SVD                                                                       |
|------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| $\sigma=5$<br>Scaled to<br>[0,20]  |   |   |   |
| $\sigma=10$<br>Scaled to<br>[0,40] |  |  |  |

# Analysis Dictionary Learning – Results (7)

Experiment #3: denoising of natural images (with  $\sigma=5$ )

The following results were obtained by modifying the DL algorithm to improve the ROPP



| Method            | Barbara         | House           | Peppers         |
|-------------------|-----------------|-----------------|-----------------|
| Fields of Experts | 37.19 dB        | 38.23 dB        | 37.63 dB        |
| Synthesis K-SVD   | <b>38.08 dB</b> | <b>39.37 dB</b> | 37.78 dB        |
| Analysis K-SVD    | 37.75 dB        | 39.15 dB        | <b>37.89 dB</b> |

An Open Problem: How to “Inject” linear dependencies into the learned dictionary?

# Part VI – We Are Done

## Summary and Conclusions

# Today ...

Sparsity and Redundancy are practiced mostly in the context of the synthesis model

Is there any other way?

Yes, the analysis model is a very appealing (and different) alternative, worth looking at

- Deepening our understanding
- Applications ?
- Combination of signal models ...

What next?

In the past few years there is a growing interest in this model, deriving pursuit methods, analyzing them, designing dictionary-learning, etc.

So, what to do?

More on these (including the slides and the relevant papers) can be found in  
<http://www.cs.technion.ac.il/~elad>

# The Analysis Model is Exciting Because



It poses mirror questions to practically every problem that has been treated with the synthesis model



It leads to unexpected avenues of research and new insights – E.g. the role of the coherence in the dictionary



It poses an appealing alternative model to the synthesis one, with interesting features and a possibility to lead to better results



Merged with the synthesis model, such constructions could lead to new and far more effective models

Thank You all !



Questions?

More on these (including the slides and the relevant papers) can be found in  
<http://www.cs.technion.ac.il/~elad>



The Analysis (Co-)Sparse Model: Definition,  
Pursuit, Dictionary-Learning and Beyond  
By: Michael Elad