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Introduction
Why Models for Signals?                                

What is the Analysis Model? 



The Analysis (Co-)Sparse Model: Definition, 
Pursuit, Dictionary-Learning and Beyond                     
By: Michael Elad

3

Voice Signal
Radar Imaging

Still Image

Stock Market

Heart Signal

 It does not matter what is the data 
you are working on – if it is carrying                              
information, it has an inner structure. 

 This structure = rules the data complies with. 

 Signal/image processing heavily relies on these rules. 

Informative Data  Inner Structure

CT & MRI

Traffic Information
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Who Needs Models?

Effective removal of noise relies on a  
proper modeling of the signal

Models are central 
in signal and image 
processing.

 They are used for 
various tasks –
sampling, IP, 
separation, 
compression,
detection, …

 A model is a set    
of mathematical 
relations that the 
data is believed to 
satisfy.
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 There are many different ways to 
mathematically model signals and 
images with varying degrees of success.

 The following is a partial list of such 
models (for images):

 Good models should be simple while 
matching the signals:

Principal-Component-Analysis

Anisotropic diffusion

Markov Random Field

Wienner Filtering

DCT and JPEG       Huber-Markov

Wavelet & JPEG-2000

Piece-Wise-Smooth

C2-smoothness

Besov-Spaces       UoS

Total-Variation

Local-PCA      Mixture of Gaus.

Simplicity Reliability

Which Model to Use?
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Research in Signal/Image Processing

Model
Problem 

(Application)
Signal

Numerical Scheme & 
Math. Statements

A New 
Research 
Paper is 
Born

The fields of signal & image processing are 
essentially built of an evolution of models and 
ways to use them for various tasks
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A Model Based on Sparsity & Redundancy

Machine 

Learning

A Sparsity-
Based Model

Signal   

Processing

Wavelet & 

Frames

Signal 

Transforms

Multi-Scale 

Analysis

Denoising

Compression

Inpainting

Blind Source 

Separation

Demosaicing
Super-

ResolutionAnomaly-

Detection Image FusionComp.-Sens.

Texture-Synthesis

Deblurring

CT-Reconstruction

Classification

Mathematics

Approximation 

Theory

Linear Algebra

Optimization

Harmonic 

Analysis



The Analysis (Co-)Sparse Model: Definition, 
Pursuit, Dictionary-Learning and Beyond                     
By: Michael Elad

8

What is This Model? 

 Task: model image patches of                              
size 10×10 pixels.

 We assume that a dictionary of 
such image patches is given, 

containing 256 atom images.

 The sparsity-based model assumption:   
every image patch can be                                              
described as a linear  

combination of few atoms.

α1 α2 α3

Σ

Chemistry of Data
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However …

Synthesis Analysis

Sparsity and Redundancy can be 
Practiced in two different ways

Well … now we 
(think that we) know 
better !! The two 
are VERY DIFFERENT

The attention to 
sparsity-based models 
has been given mostly 
to the synthesis option, 
leaving the analysis
almost untouched. 

as presented above

For a long-while 
these two options 
were confused,  
even considered        
to be (near)-
equivalent.
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This Talk is About the Analysis Model

Part I – Recalling 
the Sparsity-Based 
Synthesis Model

The co-sparse analysis model is a very 
appealing alternative to the synthesis 

model, with a great potential for leading 
us to a new era in signal modeling.

The message:

Part II – Analysis 
Model – Source of 
Confusion

Part III – Analysis 
Model – a New 
Point of View

Part V – Analysis       
K-SVD Dictionary 
Learning

Part VI – Some  
Preliminary Results 
and Prospects

Part IV –
THR 
study
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Part I - Background
Recalling the                         

Synthesis Sparse Model,                                     
the K-SVD, and Denoising 
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The Sparsity-Based Synthesis Model

 We assume the existence of a synthesis 
dictionary DIR dn whose columns are the 
atom signals.

 Signals are modeled as sparse linear 
combinations of the dictionary atoms:

 We seek a sparsity of , meaning that 
it is assumed to contain mostly zeros.

 This model is typically referred to as the
synthesis sparse and redundant 
representation model for signals.

 This model became very popular and very 
successful in the past decade.

D

…x  D

D =x
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The Synthesis Model – Basics 

 The synthesis representation is expected                                             
to be sparse:

 Adopting a Bayesian point of view:

 Draw the support T (with k non-zeroes) at random;

 Choose the non-zero coefficients                                                             
randomly (e.g. iid Gaussians); and

 Multiply by D to get the synthesis signal.

 Such synthesis signals belong to a Union-of-Subspaces (UoS):

 This union contains        subspaces, each of dimension k.  

  
0

k d

 


   where TT T
T k

x span xD D

n

k

 
 
 

n

d

D
Dictionary

α
x

=
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The Synthesis Model – Pursuit 

 Fundamental problem: Given the noisy measurements,

recover the clean signal x – This is a denoising task.

 This can be posed as: 

 While this is a (NP-) hard                                                                                                      
problem, its approximated solution can be obtained by  

 Use L1 instead of L0 (Basis-Pursuit)  

 Greedy methods (MP, OMP, LS-OMP)

 Hybrid methods (IHT, SP, CoSaMP).

 Theoretical studies provide various guarantees for the success of these 
techniques, typically depending on k and properties of D. 

     2y x v v, v ~ 0,D N I



      
2

02
ˆ ˆ ˆArgMin y s.t. k xD D

Pursuit 
Algorithms
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The Synthesis Model – Dictionary Learning

Example are 
linear 

combinations                                     
of atoms from D

D=X A

Each example has a sparse 
representation with no 

more than k atoms

2

jF 0,
Min s.t. j 1,2, ,N k    

D A
DA Y  Field & Olshausen (`96)

Engan et. al. (`99)

…

Gribonval et. al. (`04)

Aharon et. al. (`04)

… 

  


  
N

2
j j jj j 1

Given Signals : y x v v ~ 0,N I
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Initialize D         

e.g. choose a subset       
of the examples

16

The Synthesis Model – K-SVD

Sparse Coding
Use OMP or BP

Dictionary 
Update

Column-by-Column by  
SVD computation

Aharon, Elad & Bruckstein (`04)

Y

Recall: the dictionary update stage 
in the K-SVD is done one atom at a 
time, updating it using ONLY those 
examples who use it, while fixing 
the non-zero supports. 
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Synthesis Model – Image Denoising Elad & Aharon (`06)

L.t.sxyxArgMinx̂
0

0ij
ij

2

2ijij
2

22

1

,}{,x ijij

 


DR
D

Denoising by 
Pursuit

ij

D
Update the 
Dictionary

Initial 
Dictionary 

ij xR

Noisy Image

Reconstructed Image

This method (and variants of it) leads to state-of-the-art results.
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Part II – Analysis?
Source of Confusion

M. Elad, P. Milanfar, and R. Rubinstein, "Analysis Versus Synthesis in Signal 
Priors", Inverse Problems. Vol. 23, no. 3, pages 947-968, June 2007.
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Synthesis and Analysis Denoising


   

p

p 2
Min s.t. yD

  
p

p 2x
Min x s.t. x yΩ

Synthesis denoising

Analysis Alternative 

These two formulations serve the signal 
denoising problem, and both are used 

frequently and interchangeably with D=†
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Case 1: D is square and invertible


   

p

p 2
Min s.t. yD   

p

p 2x
Min x s.t. x yΩ

Synthesis Analysis



 

 1

Define x

and thus x

D

D

   
p1

2px
Min x s.t. x yD

 1Define D Ω
The Two are             

Exactly  Equivalent
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Case 2: Redundant D and 

  
p

p 2x
Min x s.t. x yΩ


   

p

p 2
Min s.t. yD

Synthesis Analysis

 

 †

Define x

and thus x

Ω

Ω


   

p †

p 2
Min s.t. yΩ

 †Define ΩD

D

 


 

  

    

T T

1T T †

x

x

x

Ω

Ω Ω Ω

Ω Ω Ω Ω

Exact Equivalence 
again ?

Ω
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Not Really !

†

We should require

x    Ω ΩΩ

The vector α defined by α=x must be spanned by the 
columns of . Thus, what we actually got is the         

following analysis-equivalent formulation

which means that analysis  synthesis in general.      

p

p 2

†Min s.t. y &


      ΩΩD

 


 

  

    

T T

1T T †

x

x

x

Ω

Ω Ω Ω

Ω Ω Ω Ω
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So, Which is Better? Which to Use?  

 Our paper [Elad, Milanfar, & Rubinstein (`07)] was the first to draw                                   
attention to this dichotomy between analysis and synthesis,                                          
and the fact that the two may be substantially different.

 We concentrated on p=1, showing that 
 The two formulations refer to very different models, 
 The analysis is much richer, and 
 The analysis model may lead to better performance.

 In the past several years there is a growing interest in the                                
analysis formulation (see recent work by Portilla et. al.,                                        
Figueiredo et. al., Candes et. al., Shen et. al., Nam et. al., Fadiliy & Peyré,                                      
Kutyniok et. al.,  Ward and Needel, …). 

 Our goal: better understanding of the analysis model, its relation                     
to the synthesis, and how to make the best of it in applications. 
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Part III - Analysis
A Different Point of View            

Towards the Analysis Model

1. S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "Co-sparse Analysis 
Modeling - Uniqueness and Algorithms" , ICASSP, May, 2011. 

2. S. Nam, M.E. Davies, M. Elad, and R. Gribonval, "The Co-sparse Analysis 
Model and Algorithms" , ACHA, Vol. 441,  January 2014.  
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The Analysis Model – Basics 

d

p

Ω
Analysis Dictionary z

x

 The analysis representation z is expected to be sparse

 Co-sparsity:    - the number of zeros in z.

 Co-Support:  - the rows that are orthogonal to x

 If  is in general position , then and thus                               
we cannot expect to get a truly sparse analysis                    
representation – Is this a problem? Not necessarily! 

 This model puts an emphasis on the zeros in the analysis 
representation, z, rather then the non-zeros, in characterizing 
the signal. This is much like the way zero-crossings of wavelets 
are used to define a signal [Mallat (`91)].

   
0 0

x z pΩ
=

 0 d

 x 0Ω

  T* spark d 1Ω

*
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The Analysis Model – Bayesian View

d

p

Ω
Analysis Dictionary z

x

 Analysis signals, just like synthesis ones,                                                               
can be generated in a systematic way:

 Bottom line: an analysis signal x satisfies: 

=Synthesis Signals Analysis Signals

Support: Choose the           
support T (|T|=k)          
at random 

Choose the co-
support  (||=   )  
at random

Coef. : Choose T at 
random 

Choose a random 
vector v

Generate: Synthesize by:
DTT=x

Orhto v w.r.t. : 



 
   

†x vI Ω Ω

s.t. x 0   Ω
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The Analysis Model – UoS

d

p

Ω
Analysis Dictionary

z

x

 Analysis signals, just like synthesis ones,                                                               
leads to a union of subspaces:

 The analysis and the synthesis models offer both a UoS construction, but 
these are very different from each other in general.

=Synthesis 
Signals 

Analysis 
Signals

What is the Subspace 
Dimension:

k d-

How Many Subspaces:

Who are those Subspaces:



n

k

 
 
 

 
 
 

p

 Tspan D  

span Ω
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The Analysis Model – Count of Subspaces

 Example: p=n=2d:

 Synthesis: k=1 (one atom) – there are 2d subspaces of dimensionality 1.

 Analysis:  =d-1 leads to         >>O(2d) subspaces of dimensionality 1.

 In the general case, for d=40 and                                                                                                   
p=n=80, this graph shows the                                                                                                
count of the number of subspaces.                                                                                            
As can be seen, the two models                                                                                               
are substantially different, the analysis                                                                                 
model is much richer in low-dim.,                                                                                               
and the two complete each other.

 The analysis model tends to lead to 
a richer UoS. Are these good news? 

2d

d 1

 
 

 

0 10 20 30 40
10

0

10
5

10
10

10
15

10
20

Sub-Space dimension

#
 o

f 
S

u
b
-S

p
a
c
e
s Synthesis

Analysis


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The Analysis Model – Pursuit 

 Fundamental problem: Given the noisy measurements,

recover the clean signal x – This is a denoising task.

 This goal can be posed as:

 This is a (NP-) hard  problem, just as in the synthesis case.

 We can approximate its solution by  L1 replacing L0 (BP-analysis), Greedy 
methods (OMP, …), and Hybrid methods (IHT, SP, CoSaMP, …).

 Theoretical studies should provide guarantees for the success of these 
techniques, typically depending on the co-sparsity and properties of . This 
work has already started [Candès, Eldar, Needell, & Randall (`10)],                                                    

[Nam, Davies, Elad, & Gribonval, (`11)], [Vaiter, Peyré, Dossal, & Fadili, (`11)], [Giryes et. al. (`12)].

      2s.ty x v, ,. 0 v ~x 0,Ω N I



    
2

02
x̂ ArgMin y x s.t. x pΩ



The Analysis (Co-)Sparse Model: Definition, 
Pursuit, Dictionary-Learning and Beyond                     
By: Michael Elad

30

The Analysis Model – Backward Greedy

BG finds one row at a time from                         
 for approximating the solution of 

    
2

02
x̂ ArgMin y x s.t. x pΩ

Stop condition?
(e.g.         )

Output xi

No

Yes 0 0
ˆi 0, x y   

i 1

T

k i 1i i 1
k

ˆArgMin w x





   
i i

†
ix̂ y 

   I Ω Ω

i 

i i 1, 
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Stop condition?
(e.g.         )

Output x

No

Yes 0 0
ˆi 0, x y   

i 1

T

k i 1i i 1
k

ˆArgMin w x





   
i i

†
ix̂ y 

   I Ω Ω

i 

i i 1, 
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The Analysis Model – Backward Greedy

Synthesis 
OMP

Is there a similarity to a 
synthesis pursuit algorithm?

= y-ri0r

T

i 1kMax d r 


 D Dir

Other options: 

• A Gram-Schmidt acceleration of this algorithm.

• Optimized BG pursuit (xBG) [Rubinstein, Peleg & Elad (`12)]

• Greedy Analysis Pursuit (GAP)  [Nam, Davies, Elad & Gribonval (`11)]

• Iterative Cosparse Projection  [Giryes, Nam, Gribonval & Davies (`11)]

• Lp relaxation using IRLS [Rubinstein (`12)]

• CoSaMP, SP, IHT and IHP analysis algorithms [Giryes et. al. (`12)]
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The Analysis Model – Low-Spark 

 What if spark(T)<<d ? 

 For example: a TV-like operator for image-
patches of size 66 pixels ( size is 7236).

 Here are analysis-signals generated for co-
sparsity ( ) of 32: 

 Their true co-sparsity is higher – see graph: 

 In such a case we may consider          , and thus 

 … the number of subspaces is smaller,                       
because  creating signals of dimension 4 implies choosing 32 linerly-independent         
rows from Ω, and the number of such cases is MUCH smaller than p-choose-32

 
 
 

  
 
 
  
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Derivative

Vertical
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Ω
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The Analysis Model – The Signature

DIFΩ Random Ω

 TSpark 37 Ω TSpark 4Ω
The Signature of a matrix is 

more informative than the Spark

Consider two possible dictionaries:

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

# of rows

Relative 

number of 

linear 

dependencies

Random 


DIF
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The Analysis Model – Low-Spark  – Pursuit 

 An example – performance of BG (and xBG) for these TV-like signals:

 1000 signal examples, SNR=25.

 We see an effective denoising,                                                                  
attenuating the noise by                                                                                            
a factor ~0.2. This is achieved for 
an effective co-sparsity of ~55.

BG or 
xBGy

 x̂

0 20 40 60 80
0

0.4

0.8

1.2

1.6

2

Co-Sparsity in the Pursuit

Denoising Performance

BG

xBG  2

2

2

ˆE x x

d




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Synthesis vs. Analysis – Summary

d

p z
x

=Ω

m

d D
α x

=

 The two align for p=n=d : non-redundant. 

 Just as the synthesis, we should work on:

 Pursuit algorithms (of all kinds) – Design.

 Pursuit algorithms (of all kinds) – Theoretical study.

 Dictionary learning from example-signals.

 Applications … 

 Our work on the analysis model so far touched 
on all the above. In this talk we shall focus on:

 A theoretical study of the simplest pursuit method: 
Analysis-THR.

 Developing a K-SVD like dictionary learning method 
for the analysis model. 
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Part IV – THR Performance                                  
Revealing Important                      
Dictionary Properties

1. T. Peleg and M. Elad, Performance Guarantees of the Thresholding Algorithm for the 
Co-Sparse Analysis Model, IEEE Trans. on Information  Theory,  Vol. 59, March 2013.
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The Analysis-THR Algorithm

Analysis-THR aims to find an approximation for the problem

  
2

2
x,

x̂ ArgMin y x s.t. x 0 & Rank d r 


    Ω Ω

Stop condition? Output

No

Yes

 0i 0,  

i i 1 ii i 1,     

i i

†x̂ y 
   I Ω Ω 

i
Rank d r  Ω

 




 
p

k k 1

Compute z y & sort

(increasing)

Ω

No
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The Restricted Ortho. Projection Property

 
 

  

   
   

 
 

    † †
j jr 22Rank d r Rank d r,j ,j

and j and j

min w 1 max w
Ω Ω

I Ω Ω Ω Ω

Ω


T

jw

Ω

 ROPP aims to get near 
orthogonality of rows 
outside the co-support               
(i.e., αr should be as close               
as possible to 1).

 This should remind of the 
(synthesis) ERC [Tropp (’04)]: 

†
jS 1S,j S k & j S

max d 1
 

D
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Theoretical Study of the THR Algorithm

e
x̂x

  
pp d r

2

20
r

8ˆPr sucess i.e. max 1 exp 2Q
8

  



       
          

         



  du 0, I  
Generate

Choose
p dΩ 

Choose
Such that 



 †x u  I Ω Ω
Project

Generate

 2 de 0, I  

y



u

r

The Analysis 
THR 

Algorithm

Ω Co-Rank                 
r

Ω

̂

 Rank d r  Ω

  
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Implications

Co-Sparsity

Prob(Success)



ROPP

Prob(Success)

r

Noise Power

Prob(Success)



As empirical tests show, the 
theoretical performance 
predicts an improvement    

for an Ω with strong                     
linear dependencies,                      

and high ROPP Empirical 
Results

Theoretical 
Results
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Part V – Dictionaries               
Analysis                                                

Dictionary-Learning by                           
K-SVD-Like Algorithm                                      

1. B. Ophir, M. Elad, N. Bertin and M.D. Plumbley, "Sequential Minimal Eigenvalues 
- An Approach to Analysis Dictionary Learning", EUSIPCO, August 2011.

2. R. Rubinstein T. Peleg, and M. Elad, "Analysis K-SVD: A Dictionary-Learning 
Algorithm for the Analysis Sparse Model", IEEE-TSP, Vol. 61, March 2013.  
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Output

…

Input

Ω

Goal: given a set of signals, find the analysis 
dictionary Ω that best fit them

Analysis Dictionary Learning – The Goal

.

Y
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Analysis Dictionary Learning – The Signals

=X
Ω Z

We are given a set of N contaminated (noisy) 
analysis signals, and our goal is to recover their 

analysis dictionary, 

  


    
j

2
j

N

j
j

j j
1j

y x v , , v ~ 0. x ,s.t 0 N IΩ
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Analysis Dictionary Learning – Goal 

2

jF 0,
Min s.t. j 1,2, ,N k    

D A
DA Y 

2

jF 0,
Min s.t. j 1,2, ,N x p    
Ω X

X Y Ω 

Synthesis

Analysis

We shall adopt a similar approach to the K-SVD for 
approximating the minimization of the analysis goal

Noisy Examples Denoised Signals are L0 Sparse
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Analysis K-SVD – Outline 

..

= …

Initialize Ω Sparse Code
Dictionary 

Update

…X ZΩ

[Rubinstein, Peleg & Elad (`12)]
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Analysis K-SVD – Sparse-Coding Stage

.

Z
.

=…X …Ω

2

jF 0,
Min s.t. j 1,2, ,N x p    
Ω X

X Y Ω 

Assuming that  is fixed, we 
aim at updating X

 


    
N

2

j 0j 2
j 1

x̂ ArgMin x y s.t. x p
X

Ω

These are N separate 
analysis-pursuit 

problems. We suggest 
to use the BG or the 

xBG algorithms.



The Analysis (Co-)Sparse Model: Definition, 
Pursuit, Dictionary-Learning and Beyond                     
By: Michael Elad

47

Analysis K-SVD – Dictionary Update Stage

.

Z
.

=…X …Ω

• Only signals orthogonal to the atom 
should get to vote for its new value.

• The known supports should be 
preserved.

2

jF 0,
Min s.t. j 1,2, ,N x p    
Ω X

X Y Ω 
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Analysis Dictionary – Dic. Update (2)

After the sparse-coding, j are known. We now aim                                      
at updating a row (e.g. wk

T) from 

k k

jk j

2 T

kk k k2w ,

k 2

j S x 0

Min s.t. w 0

w 1

   
 

  
 
 

X

Ω

X Y X

We use only   
the signals Sk

that are found 
orthogonal     

to wk

Each example 
should keep its 
co-support j\k

Each of the chosen 
examples should be 
orthogonal to the 

new row wk

Avoid 
trivial 

solution
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Analysis Dictionary – Dic. Update (3)

k k

jk j

2 T

kk k k2w ,

k 2

j S x 0

Min s.t. w 0

w 1

   
 

  
 
 

X

Ω

X Y X

This problem we have defined is too hard to handle 

Intuitively, and in the spirit of the K-SVD, we could suggest the 
following alternative

k k

T
2

k k†
k j j k

w , 2
k 2

w 0
Min I s.t.

w 1

  
        

X

X
X Ω Ω Y
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A better approximation for our 
original problem is 

The obtained problem is a simple eigenvaue
approximation problem, easily given by SVD

Analysis Dictionary – Dic. Update (4)


k

2T

k kk 2w , 2
Min w s.t. w 1Y

k k

jk j

2 T

kk k k2w ,

k 2

j S x 0

Min s.t. w 0

w 1

   
 

  
 
 

X

Ω

X Y X

which is equivalent to
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Part VI – Results                                   
For Dictionary-Learning                              

and Image Denoising                                       
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Analysis Dictionary Learning – Results (1) 

Synthetic experiment #1: TV-Like 

 We generate 30,000 TV-like signals of the same kind described before (: 7236,   =32) 

 We apply 300 iterations of the Analysis K-SVD with BG (fixed   ), and then 5 more using the xBG

 Initialization by orthogonal vectors to randomly chosen sets of 35 examples

 Additive noise: SNR=25. atom detected if:



T ˆ1 w w 0.01 


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Even though we have not identified 
 completely (~92% this time), we 
got an alternative feasible analysis 

dictionary with the same number of 
zeros per example, and a residual 

error within the noise level. 
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Analysis Dictionary Learning – Results (1) 

Synthetic experiment #1: TV-Like 

Original 
Analysis 

Dictionary

Learned 
Analysis 
Dictionary
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Analysis Dictionary Learning – Results (2) 

Synthetic experiment #2: Random 

 Very similar to the above, but with a random (full-spark) analysis dictionary : 7236

 Experiment setup and parameters: the very same as above

 In both algorithms: replacing BG by xBG (in both experiments) leads to a consistent descent in the 
relative error, and better recovery results. 
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As in the previous example, even 
though we have not identified 

completely (~80% this time), we got 
an alternative feasible analysis 

dictionary with the same number of 
zeros per example, and a residual 

error within the noise level. 
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Analysis Dictionary Learning – Results (3) 

Experiment #3: Piece-Wise Constant Image

 We take 10,000 patches (+noise σ=5) to train on

 Here is what we got 
we promote sparse                                                                      
outcome

Initial 

Trained                           
(100 iterations)                            


Original Image

Patches used for training
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Analysis Dictionary Learning – Results (4) 

Experiment #4: The Image “House”

 We take 10,000 patches (+noise σ=10) to train on

 Here is what we got:

Initial 

Trained                           
(100 iterations)                            


Original Image

Patches used for training
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Localized and 
oriented atoms

57

Analysis Dictionary Learning – Results (5) 

Experiment #5: A set of Images

 We take 5,000 patches from each image to train on.

 Block-size 88, dictionary size 10064. Co-sparsity set to 36.

 Here is what we got:

Trained  
(100 iterations)

Original Images
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Back to Image Denoising  – (1) 

256256

Non-flat patch examples
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Back to Image Denoising  – (2) 

 Synthesis K-SVD Dictionary Learning:

 Training set – 10,000 noisy non-flat 5x5 patches.

 Initial dictionary – 100 atoms generated at random from the data.

 10 iterations – sparsity-based OMP with k=3 for each patch example. 

(dimension 4, 3 atoms + DC) + K-SVD atom update.

 Patch Denoising – error-based OMP with 2=1.3d2.

 Image Reconstruction – Average overlapping patch recoveries.
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Back to Image Denoising  – (3) 

 Analysis K-SVD Dictionary Learning

 Training set – 10,000 noisy non-flat 5x5 patches.

 Initial dictionary – 50 rows generated at random from the data.

 10 iterations – rank-based OBG with r=4 for each patch example + 

constrained atom update (sparse zero-mean atoms).

 Final dictionary – keep only 5-sparse atoms.

 Patch Denoising – error-based OBG with 2=1.3d2.

 Image Reconstruction – Average overlapping patch recoveries. 
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Back to Image Denoising  – (4) 

100 atoms

Synthesis Dictionary

38 atoms

Analysis Dictionary

Learned dictionaries for =5
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Back to Image Denoising  – (5) 

d

n

d

signal

d

Analysis                  
K-SVD

Synthesis                       
K-SVD

BM3D

1.741.752.032.42n/aAverage subspace 
dimension 1.431.511.691.79

4.381.975.372.91n/aPatch denoising: 
error per element 9.626.8110.297.57

3738100100n/a# of dictionary 
atoms 4139100100

39.1346.0238.1343.6835.4440.66Image PSNR [dB]

31.9735.0332.0234.8330.3232.23

=10=5

=20=15

Cell Legend:
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Back to Image Denoising  – (6) 

BM3D Synthesis K-SVD Analysis K-SVD

=5
Scaled to   
[0,20]

=10
Scaled to   
[0,40]
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Analysis Dictionary Learning – Results (7) 

Experiment #3: denoising of natural images (with =5)

The following results                                                                               
were obtained by                                                                                      
modifying the DL                                                                                                   
algorithm to improve                                                                                               
the ROPP

Barbara                         House                           Peppers

Method Barbara House Peppers

Fields of Experts 37.19 dB 38.23 dB 37.63 dB

Synthesis K-SVD 38.08 dB 39.37 dB 37.78 dB

Analysis K-SVD 37.75 dB 39.15 dB 37.89 dB

An Open Problem:  How to “Inject” linear 
dependencies into the learned dictionary?
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Part VI – We Are Done                                 
Summary and                
Conclusions
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Today …

Yes, the analysis model is 
a very appealing (and 
different) alternative, 

worth looking at

Is there any 
other way?

Sparsity and 
Redundancy are 

practiced mostly in 
the context of the 
synthesis model

So, what             
to do?

In the past few years 
there is a growing 

interest in this model, 
deriving pursuit 

methods, analyzing 
them, designing 

dictionary-learning, etc. 

More on these (including the slides and the relevant papers) can be found in 
http://www.cs.technion.ac.il/~elad

What next?

•Deepening our 
understanding

•Applications ?

•Combination of 
signal models … 
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The Analysis Model is Exciting Because  

It poses mirror questions to practically 
every problem that has been treated with 

the synthesis model

It leads to unexpected avenues of research 
and new insights – E.g. the role of the 

coherence in the dictionary

It poses an appealing alternative model to 
the synthesis one, with interesting features 

and a possibility to lead to better results

Merged with the synthesis model, such 
constructions could lead to new and far 

more effective models
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Thank You all !

Questions?

More on these (including the slides and the relevant papers) can be found in 
http://www.cs.technion.ac.il/~elad


